December  2020, 25(12): 4641-4657. doi: 10.3934/dcdsb.2020117

Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone

1. 

Department of Mathematics and Institute of Natural Sciences, Shanghai Jiaotong University, Shanghai 200240, China

2. 

Department of Mathematics, Dalian Minzu University, Dalian 116600, China

3. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

* Corresponding author: Sining Zheng

Received  October 2019 Published  December 2020 Early access  March 2020

Fund Project: The first author is supported by National Natural Science Foundation of China No.11701067 and Natural Science Foundation of Liaoning 2019-ZD-0180

In this paper we study the protection zone problem to a predator-prey model subject to Beddington-DeAngelis functional responses and small prey growth rate. This is a successive work to a previous paper of the authors [X. He, S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol. 75 (2017) 239-257], where the model with large prey growth rate was considered. At first we establish the existence and multiplicity of positive steady state solutions, and then give the dynamic behavior of the evolution problem. It is proved that there may be no positive steady state, or may have at leat one, two, or even three positive steady states, depending on the parameters involved such as the growth rate, the predation rate, and the food handling time of the predators, the growth rate and the refuge ability of the preys, and the sizes of the habitat with protection zone. In addition, it is shown that the dynamics of the solutions rely on the initial state as well, e.g., though there could be multiple positive steady states, the prey will go to extinction as time tends to infinity if its initial value is small.

Citation: Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117
References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM. J. Math. Anal., 17 (1986), 1339-1353.  doi: 10.1137/0517094.

[3]

W. Chen and M. Wang, Qualitative analysis of predator-prey model with Beddington-DeAngelis functional response and diffusion, Math. Comput. Modelling, 42 (2005), 31-44.  doi: 10.1016/j.mcm.2005.05.013.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.

[5]

E. N. Dancer, On the indices of fixed points of mapppings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.

[6]

D. L. DeAngelisR. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881-892.  doi: 10.2307/1936298.

[7]

Y. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.

[8]

Y. DuR. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.

[9]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.

[10]

Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.  doi: 10.1090/S0002-9947-07-04262-6.

[11]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response, J. Theoret. Biol., 314 (2012), 106-108.  doi: 10.1016/j.jtbi.2012.08.030.

[12]

G. Guo and J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal., 72 (2010), 1632-1646.  doi: 10.1016/j.na.2009.09.003.

[13]

X. He and S. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5.

[14]

X. He and S. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.  doi: 10.3934/dcdsb.2015.20.2027.

[15]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes Mathematics, Vol. 426, Chapman & Hall/CRC, Boca Ration, FL, 2001. doi: 10.1201/9781420035506.

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.

[17]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.

[18]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[19]

J. Shi, Persistence and bifurcation of degerate solutions, J. Functional Analysis, 169 (1999), 494-531.  doi: 10.1006/jfan.1999.3483.

[20]

Y.-X. Wang and W.-T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.

show all references

References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM. J. Math. Anal., 17 (1986), 1339-1353.  doi: 10.1137/0517094.

[3]

W. Chen and M. Wang, Qualitative analysis of predator-prey model with Beddington-DeAngelis functional response and diffusion, Math. Comput. Modelling, 42 (2005), 31-44.  doi: 10.1016/j.mcm.2005.05.013.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.

[5]

E. N. Dancer, On the indices of fixed points of mapppings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.

[6]

D. L. DeAngelisR. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881-892.  doi: 10.2307/1936298.

[7]

Y. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.

[8]

Y. DuR. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.

[9]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.

[10]

Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.  doi: 10.1090/S0002-9947-07-04262-6.

[11]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response, J. Theoret. Biol., 314 (2012), 106-108.  doi: 10.1016/j.jtbi.2012.08.030.

[12]

G. Guo and J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal., 72 (2010), 1632-1646.  doi: 10.1016/j.na.2009.09.003.

[13]

X. He and S. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5.

[14]

X. He and S. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.  doi: 10.3934/dcdsb.2015.20.2027.

[15]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes Mathematics, Vol. 426, Chapman & Hall/CRC, Boca Ration, FL, 2001. doi: 10.1201/9781420035506.

[16]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.

[17]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.

[18]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[19]

J. Shi, Persistence and bifurcation of degerate solutions, J. Functional Analysis, 169 (1999), 494-531.  doi: 10.1006/jfan.1999.3483.

[20]

Y.-X. Wang and W.-T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.

[1]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[2]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[3]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[4]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[5]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[6]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[7]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177

[8]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[9]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[10]

Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292

[11]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[12]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[13]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[14]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[15]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[16]

Simone Fagioli, Yahya Jaafra. Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16 (3) : 377-411. doi: 10.3934/nhm.2021010

[17]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[18]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[19]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[20]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (408)
  • HTML views (344)
  • Cited by (0)

Other articles
by authors

[Back to Top]