\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone

  • * Corresponding author: Sining Zheng

    * Corresponding author: Sining Zheng

The first author is supported by National Natural Science Foundation of China No.11701067 and Natural Science Foundation of Liaoning 2019-ZD-0180

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study the protection zone problem to a predator-prey model subject to Beddington-DeAngelis functional responses and small prey growth rate. This is a successive work to a previous paper of the authors [X. He, S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol. 75 (2017) 239-257], where the model with large prey growth rate was considered. At first we establish the existence and multiplicity of positive steady state solutions, and then give the dynamic behavior of the evolution problem. It is proved that there may be no positive steady state, or may have at leat one, two, or even three positive steady states, depending on the parameters involved such as the growth rate, the predation rate, and the food handling time of the predators, the growth rate and the refuge ability of the preys, and the sizes of the habitat with protection zone. In addition, it is shown that the dynamics of the solutions rely on the initial state as well, e.g., though there could be multiple positive steady states, the prey will go to extinction as time tends to infinity if its initial value is small.

    Mathematics Subject Classification: Primary: 35J47, 35K57, 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.  doi: 10.2307/3866.
    [2] J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM. J. Math. Anal., 17 (1986), 1339-1353.  doi: 10.1137/0517094.
    [3] W. Chen and M. Wang, Qualitative analysis of predator-prey model with Beddington-DeAngelis functional response and diffusion, Math. Comput. Modelling, 42 (2005), 31-44.  doi: 10.1016/j.mcm.2005.05.013.
    [4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.
    [5] E. N. Dancer, On the indices of fixed points of mapppings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.  doi: 10.1016/0022-247X(83)90098-7.
    [6] D. L. DeAngelisR. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881-892.  doi: 10.2307/1936298.
    [7] Y. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.
    [8] Y. DuR. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.
    [9] Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.
    [10] Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.  doi: 10.1090/S0002-9947-07-04262-6.
    [11] S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response, J. Theoret. Biol., 314 (2012), 106-108.  doi: 10.1016/j.jtbi.2012.08.030.
    [12] G. Guo and J. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal., 72 (2010), 1632-1646.  doi: 10.1016/j.na.2009.09.003.
    [13] X. He and S. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5.
    [14] X. He and S. Zheng, Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.  doi: 10.3934/dcdsb.2015.20.2027.
    [15] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes Mathematics, Vol. 426, Chapman & Hall/CRC, Boca Ration, FL, 2001. doi: 10.1201/9781420035506.
    [16] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.  doi: 10.2977/prims/1195188180.
    [17] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.
    [18] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.
    [19] J. Shi, Persistence and bifurcation of degerate solutions, J. Functional Analysis, 169 (1999), 494-531.  doi: 10.1006/jfan.1999.3483.
    [20] Y.-X. Wang and W.-T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.
  • 加载中
SHARE

Article Metrics

HTML views(417) PDF downloads(435) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return