• Previous Article
    Effects of travel frequency on the persistence of mosquito-borne diseases
  • DCDS-B Home
  • This Issue
  • Next Article
    Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone
December  2020, 25(12): 4659-4676. doi: 10.3934/dcdsb.2020118

A delayed differential equation model for mosquito population suppression with sterile mosquitoes

1. 

Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China

2. 

School of Mathematics and Statistics, Pu'er University, Pu'er 665000, China

3. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA

* Corresponding author: Jianshe Yu

Received  October 2019 Revised  December 2019 Published  December 2020 Early access  March 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 11631005), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 16R16), the China Postdoctoral Science Foundation (No.2019M660196), and the Guangzhou Postdoctoral International Training Program Funding Project

The technique of sterile mosquitoes plays an important role in the control of mosquito-borne diseases such as malaria, dengue, yellow fever, west Nile, and Zika. To explore the interactive dynamics between the wild and sterile mosquitoes, we formulate a delayed mosquito population suppression model with constant releases of sterile mosquitoes. Through the analysis of global dynamics of solutions of the model, we determine a threshold value of the release rate such that if the release threshold is exceeded, then the wild mosquito population will be eventually suppressed, whereas when the release rate is less than the threshold, the wild and sterile mosquitoes coexist and the model exhibits a complicated feature. We also obtain theoretical results including a sufficient and necessary condition for the global asymptotic stability of the zero solution. We provide numerical examples to demonstrate our results and give brief discussions about our findings.

Citation: Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118
References:
[1]

L. AlpheyM. BenedictR. BelliniG. G. ClarkD. A. DameM. W. Service and S. L. Dobson, Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Diseases, 10 (2010), 295-311.  doi: 10.1089/vbz.2009.0014.

[2]

R. AnguelovY. Dumont and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64 (2012), 374-389.  doi: 10.1016/j.camwa.2012.02.068.

[3]

J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing, Math. Biosci., 27 (1975), 109-117.  doi: 10.1016/0025-5564(75)90028-0.

[4]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, New York, 2012. doi: 10.1007/978-1-4614-1686-9.

[6]

L. CaiS. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.  doi: 10.1137/13094102X.

[7]

L. CaiJ. HuangX. Song and Y. Zhang, Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 6279-6295.  doi: 10.3934/dcdsb.2019139.

[8]

N. ChitnisJ. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.  doi: 10.1007/s11538-008-9299-0.

[9]

H. DiazA. A. RamirezA. Olarte and C. Clavijo, A model for the control of malaria using genetically modified vectors, J. Theoret. Biol., 276 (2011), 57-66.  doi: 10.1016/j.jtbi.2011.01.053.

[10]

V. A. Dyck, J. Hendrichs and A. S. Robinson (eds.), Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, 2005.

[11]

K. R. FisterM. L. MccarthyS. F. Oppenheimer and C. Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201-212.  doi: 10.1016/j.mbs.2013.05.008.

[12]

J. Hale, Theory of Functional Differential Equations, 2$^nd$ edition, Springer-Verlag, New York-Heidelberg, 1977.

[13]

L. HuM. TangZ. WuZ. Xi and J. Yu, The threshold infection level for Wolbachia invasion in random environments, J. Differential Equations, 266 (2019), 4377-4393.  doi: 10.1016/j.jde.2018.09.035.

[14]

M. HuangJ. LuoL. HuB. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440 (2018), 1-11.  doi: 10.1016/j.jtbi.2017.12.012.

[15]

M. HuangM. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77-96.  doi: 10.1007/s11425-014-4934-8.

[16]

M. HuangM. TangJ. Yu and B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Biosci. Eng., 16 (2019), 4741-4757.  doi: 10.3934/mbe.2019238.

[17]

M. Huang, M. Tang, J. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Dicrete Contin. Dyn. Syst. doi: 10.3934/dcds.2020042.

[18]

M. HuangJ. YuL. Hu and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249-1266.  doi: 10.1007/s11425-016-5149-y.

[19]

Y. HuiG. Lin and Q. Sun, Oscillation threshold for a mosquito population suppression model with time delay, Math. Biosci. Eng., 16 (2019), 7362-7374.  doi: 10.3934/mbe.2019367.

[20]

G. E. Hutchinson, Circular causal systems in ecology, Ann. NY. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.

[21] G. E. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, Conn., 1978. 
[22]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 1, Springer, Berlin, 1992,164–224. doi: 10.1007/978-3-642-61243-5.

[23]

J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.  doi: 10.1080/17513758.2016.1216613.

[24]

J. LiM. Han and J. Yu, Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306 (2018), 20-31.  doi: 10.1016/j.mbs.2018.10.005.

[25]

Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu and et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), E3301. doi: 10.1371/journal.pntd.0003301.

[26]

F. LiuC. YaoP. Lin and C. Zhou, Studies on life table of the nature population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni., 31 (1992), 84-93. 

[27]

Z.-W LiuY.-Y Zhang and Y.-Z Yang, Population dynamics of Aedes (stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274-280. 

[28]

E. Liz, Delayed logistic population models revisited, Publ. Mat., Vol. EXTRA (2014), 309–331.

[29]

A. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9-65.  doi: 10.1071/ZO9540009.

[30]

R. S. PattersonD. E. WeidhaassH. R. Ford and C. S. Lofgren, Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males, Science, 168 (1970), 1368-1369.  doi: 10.1126/science.168.3937.1368.

[31]

G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.  doi: 10.1098/rspa.2007.1890.

[32]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874. 

[33]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.

[34]

J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.

[35]

J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.  doi: 10.1080/17513758.2019.1682201.

[36]

J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[37]

D. ZhangX. ZhengZ. XiK. Bourtzis and J. R. L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), 1-13.  doi: 10.1371/journal.pone.0121126.

[38]

B. ZhengM. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.  doi: 10.1137/13093354X.

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.

show all references

References:
[1]

L. AlpheyM. BenedictR. BelliniG. G. ClarkD. A. DameM. W. Service and S. L. Dobson, Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Diseases, 10 (2010), 295-311.  doi: 10.1089/vbz.2009.0014.

[2]

R. AnguelovY. Dumont and J. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64 (2012), 374-389.  doi: 10.1016/j.camwa.2012.02.068.

[3]

J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing, Math. Biosci., 27 (1975), 109-117.  doi: 10.1016/0025-5564(75)90028-0.

[4]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.  doi: 10.1137/S0036141000376086.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, New York, 2012. doi: 10.1007/978-1-4614-1686-9.

[6]

L. CaiS. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.  doi: 10.1137/13094102X.

[7]

L. CaiJ. HuangX. Song and Y. Zhang, Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 6279-6295.  doi: 10.3934/dcdsb.2019139.

[8]

N. ChitnisJ. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.  doi: 10.1007/s11538-008-9299-0.

[9]

H. DiazA. A. RamirezA. Olarte and C. Clavijo, A model for the control of malaria using genetically modified vectors, J. Theoret. Biol., 276 (2011), 57-66.  doi: 10.1016/j.jtbi.2011.01.053.

[10]

V. A. Dyck, J. Hendrichs and A. S. Robinson (eds.), Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, 2005.

[11]

K. R. FisterM. L. MccarthyS. F. Oppenheimer and C. Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201-212.  doi: 10.1016/j.mbs.2013.05.008.

[12]

J. Hale, Theory of Functional Differential Equations, 2$^nd$ edition, Springer-Verlag, New York-Heidelberg, 1977.

[13]

L. HuM. TangZ. WuZ. Xi and J. Yu, The threshold infection level for Wolbachia invasion in random environments, J. Differential Equations, 266 (2019), 4377-4393.  doi: 10.1016/j.jde.2018.09.035.

[14]

M. HuangJ. LuoL. HuB. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440 (2018), 1-11.  doi: 10.1016/j.jtbi.2017.12.012.

[15]

M. HuangM. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77-96.  doi: 10.1007/s11425-014-4934-8.

[16]

M. HuangM. TangJ. Yu and B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Biosci. Eng., 16 (2019), 4741-4757.  doi: 10.3934/mbe.2019238.

[17]

M. Huang, M. Tang, J. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Dicrete Contin. Dyn. Syst. doi: 10.3934/dcds.2020042.

[18]

M. HuangJ. YuL. Hu and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249-1266.  doi: 10.1007/s11425-016-5149-y.

[19]

Y. HuiG. Lin and Q. Sun, Oscillation threshold for a mosquito population suppression model with time delay, Math. Biosci. Eng., 16 (2019), 7362-7374.  doi: 10.3934/mbe.2019367.

[20]

G. E. Hutchinson, Circular causal systems in ecology, Ann. NY. Acad. Sci., 50 (1948), 221-246.  doi: 10.1111/j.1749-6632.1948.tb39854.x.

[21] G. E. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, Conn., 1978. 
[22]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 1, Springer, Berlin, 1992,164–224. doi: 10.1007/978-3-642-61243-5.

[23]

J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.  doi: 10.1080/17513758.2016.1216613.

[24]

J. LiM. Han and J. Yu, Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306 (2018), 20-31.  doi: 10.1016/j.mbs.2018.10.005.

[25]

Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu and et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), E3301. doi: 10.1371/journal.pntd.0003301.

[26]

F. LiuC. YaoP. Lin and C. Zhou, Studies on life table of the nature population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni., 31 (1992), 84-93. 

[27]

Z.-W LiuY.-Y Zhang and Y.-Z Yang, Population dynamics of Aedes (stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274-280. 

[28]

E. Liz, Delayed logistic population models revisited, Publ. Mat., Vol. EXTRA (2014), 309–331.

[29]

A. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9-65.  doi: 10.1071/ZO9540009.

[30]

R. S. PattersonD. E. WeidhaassH. R. Ford and C. S. Lofgren, Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males, Science, 168 (1970), 1368-1369.  doi: 10.1126/science.168.3937.1368.

[31]

G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.  doi: 10.1098/rspa.2007.1890.

[32]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874. 

[33]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.

[34]

J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.

[35]

J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.  doi: 10.1080/17513758.2019.1682201.

[36]

J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[37]

D. ZhangX. ZhengZ. XiK. Bourtzis and J. R. L. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), 1-13.  doi: 10.1371/journal.pone.0121126.

[38]

B. ZhengM. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.  doi: 10.1137/13093354X.

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.

Figure 1.  Suppose $t_0 = 0$ and model parameters of (6) given in (15). FIGURE 1 (A) is the graph of stability switch in terms of time delays for model (6) for $\tau\in(0, \overline{\tau})$, such that equilibrium $S^{(1)}_\nu$ is asymptotically stable for $\tau\in (0, \tau_1)\cup(\tau_4, \overline{\tau})$, and unstable for $\tau\in(\tau_1, \tau_4)$. Given that $\hat{\tau}\approx 25.2573 > 2\sqrt{3}\pi/(9\mu_1)\approx 20.1533$, we find a bifurcation at $\tau^{**} = \tau_4\approx 25.9708\in (\hat{\tau}, \overline{\tau})$ such that $S^{(1)}_\nu$ is asymptotically stable for $\tau\in (\hat{\tau}, \tau^{**})$, and unstable for $\tau\in (r_0^{**}, \overline{\tau})$, as shown in FIGURE 1 (B)
Figure 2.  Stability of the positive equilibrium $S^{(1)}_\nu$ in model (6) when $\hat{\tau} < \tau < \overline{\tau}$. Suppose $t_0 = 0$ and model parameters are given in (15). Then $\hat{\tau}\approx 25.2573$, and $\overline{\tau}\approx 28.1341$. We find a bifurcation point $\tau^{**}\approx 25.9708\in (\hat{\tau}, \overline{\tau})$. When $\tau\in(\hat{\tau}, \tau^{**})$, equilibrium $S^{(1)}_\nu$ is unstable as shown in FIGURE 2 (A). When $\tau\in(\tau^{**}, \overline{\tau})$, equilibrium $S^{(1)}_\nu$ is asymptotically stable as shown in FIGURE 2 (B)
Figure 3.  Simulations for the case of $0 < b < b^*$. Parameters are given in (28) such that the release threshold $b^*\approx 28.81$ and we set $b = 20$. There exist two positive equilibria $S_v^- = 65.5632$ and $S_v^{+} = 227.77012$ where $S_v^{-}$ is unstable and $S_v^{+}$ is locally asymptotically stable. System (3) exhibits a bi-stability phenomenon followed from Theorem 4.4. FIGURE 3 (A) is the phase diagram of system (3), and FIGURE 3 (B) shows the dynamics of the wild mosquito population of system (3) where solutions approach either the locally asymptotically stable zero solution or $S_v^+$ depending on their initial values
Figure 4.  Simulations for the case of $b > b^*$. Parameters are given in (28) such that the release threshold $b^*\approx 28.81$ and we set $b = 35$ greater than $b^*$. Then the zero equilibrium $N_0$ is globally asymptotically stable, which indicates that the wild mosquito population is eventually eradicated. FIGURE 4 (A) is the phase diagram of system (3), and FIGURE 4 (B) illustrates the dynamics of the wild mosquito population of system (3) where all solutions eventually approach zero
Figure 5.  Comparisons of the effects of $b$ on the suppression efficiency when $b > b^*$. Here parameters are given in (28). We choose four different $b$: 50, 70, 90,130, all of which are larger than the threshold release rate $b^*\approx 28.81$. It is clear that the efficiency is improved as $b$ increased
Table 1.  Parameter values for Aedes albopictus and sterile mosquitoes taken from earlier measurements in Guangzhou
Para. Definition Range Reference
$ a $ Number of offsprings produced per [0.9043, 6.4594] [27,37]
individual, per unit of time
$ \tau $ Average maturation period of wild [22.6, 54.6] [25,26]
mosquitoes (day)
$ e^{-\mu_0\tau} $ Survival rate of the immature 0.05 [26]
mosquitoes $ (\text{day}^{-1}) $
$ \mu_1 $ Death rate of wild mosquitoes $ (\text{day}^{-1}) $ [0.0198, 0.1368] [27]
$ \mu_2 $ Death rate of sterile mosquitoes $ (\text{day}^{-1}) $ 1/7 [2,8]
$ \xi_\nu $ Carrying capacity parameter of wild 0.0025 Given
mosquitoes
Para. Definition Range Reference
$ a $ Number of offsprings produced per [0.9043, 6.4594] [27,37]
individual, per unit of time
$ \tau $ Average maturation period of wild [22.6, 54.6] [25,26]
mosquitoes (day)
$ e^{-\mu_0\tau} $ Survival rate of the immature 0.05 [26]
mosquitoes $ (\text{day}^{-1}) $
$ \mu_1 $ Death rate of wild mosquitoes $ (\text{day}^{-1}) $ [0.0198, 0.1368] [27]
$ \mu_2 $ Death rate of sterile mosquitoes $ (\text{day}^{-1}) $ 1/7 [2,8]
$ \xi_\nu $ Carrying capacity parameter of wild 0.0025 Given
mosquitoes
[1]

Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139

[2]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[3]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[4]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[5]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[6]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[7]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[8]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[9]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[10]

Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113

[11]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[12]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[13]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[14]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[15]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[16]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[17]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[18]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[19]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[20]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (487)
  • HTML views (412)
  • Cited by (0)

Other articles
by authors

[Back to Top]