
-
Previous Article
Effects of travel frequency on the persistence of mosquito-borne diseases
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone
A delayed differential equation model for mosquito population suppression with sterile mosquitoes
1. | Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China |
2. | School of Mathematics and Statistics, Pu'er University, Pu'er 665000, China |
3. | Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA |
The technique of sterile mosquitoes plays an important role in the control of mosquito-borne diseases such as malaria, dengue, yellow fever, west Nile, and Zika. To explore the interactive dynamics between the wild and sterile mosquitoes, we formulate a delayed mosquito population suppression model with constant releases of sterile mosquitoes. Through the analysis of global dynamics of solutions of the model, we determine a threshold value of the release rate such that if the release threshold is exceeded, then the wild mosquito population will be eventually suppressed, whereas when the release rate is less than the threshold, the wild and sterile mosquitoes coexist and the model exhibits a complicated feature. We also obtain theoretical results including a sufficient and necessary condition for the global asymptotic stability of the zero solution. We provide numerical examples to demonstrate our results and give brief discussions about our findings.
References:
[1] |
L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson,
Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Diseases, 10 (2010), 295-311.
doi: 10.1089/vbz.2009.0014. |
[2] |
R. Anguelov, Y. Dumont and J. Lubuma,
Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64 (2012), 374-389.
doi: 10.1016/j.camwa.2012.02.068. |
[3] |
J. R. Beddington and R. M. May,
Time delays are not necessarily destabilizing, Math. Biosci., 27 (1975), 109-117.
doi: 10.1016/0025-5564(75)90028-0. |
[4] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[6] |
L. Cai, S. Ai and J. Li,
Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.
doi: 10.1137/13094102X. |
[7] |
L. Cai, J. Huang, X. Song and Y. Zhang,
Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 6279-6295.
doi: 10.3934/dcdsb.2019139. |
[8] |
N. Chitnis, J. M. Hyman and J. M. Cushing,
Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0. |
[9] |
H. Diaz, A. A. Ramirez, A. Olarte and C. Clavijo,
A model for the control of malaria using genetically modified vectors, J. Theoret. Biol., 276 (2011), 57-66.
doi: 10.1016/j.jtbi.2011.01.053. |
[10] |
V. A. Dyck, J. Hendrichs and A. S. Robinson (eds.), Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, 2005. Google Scholar |
[11] |
K. R. Fister, M. L. Mccarthy, S. F. Oppenheimer and C. Collins,
Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201-212.
doi: 10.1016/j.mbs.2013.05.008. |
[12] |
J. Hale, Theory of Functional Differential Equations, 2$^nd$ edition, Springer-Verlag, New York-Heidelberg, 1977. |
[13] |
L. Hu, M. Tang, Z. Wu, Z. Xi and J. Yu,
The threshold infection level for Wolbachia invasion in random environments, J. Differential Equations, 266 (2019), 4377-4393.
doi: 10.1016/j.jde.2018.09.035. |
[14] |
M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu,
Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440 (2018), 1-11.
doi: 10.1016/j.jtbi.2017.12.012. |
[15] |
M. Huang, M. Tang and J. Yu,
Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77-96.
doi: 10.1007/s11425-014-4934-8. |
[16] |
M. Huang, M. Tang, J. Yu and B. Zheng,
The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Biosci. Eng., 16 (2019), 4741-4757.
doi: 10.3934/mbe.2019238. |
[17] |
M. Huang, M. Tang, J. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Dicrete Contin. Dyn. Syst.
doi: 10.3934/dcds.2020042. |
[18] |
M. Huang, J. Yu, L. Hu and B. Zheng,
Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249-1266.
doi: 10.1007/s11425-016-5149-y. |
[19] |
Y. Hui, G. Lin and Q. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Math. Biosci. Eng., 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[20] |
G. E. Hutchinson,
Circular causal systems in ecology, Ann. NY. Acad. Sci., 50 (1948), 221-246.
doi: 10.1111/j.1749-6632.1948.tb39854.x. |
[21] |
G. E. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, Conn., 1978.
![]() |
[22] |
A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 1, Springer, Berlin, 1992,164–224.
doi: 10.1007/978-3-642-61243-5. |
[23] |
J. Li,
New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.
doi: 10.1080/17513758.2016.1216613. |
[24] |
J. Li, M. Han and J. Yu,
Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306 (2018), 20-31.
doi: 10.1016/j.mbs.2018.10.005. |
[25] |
Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu and et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), E3301.
doi: 10.1371/journal.pntd.0003301. |
[26] |
F. Liu, C. Yao, P. Lin and C. Zhou, Studies on life table of the nature population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni., 31 (1992), 84-93. Google Scholar |
[27] |
Z.-W Liu, Y.-Y Zhang and Y.-Z Yang, Population dynamics of Aedes (stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274-280. Google Scholar |
[28] |
E. Liz, Delayed logistic population models revisited, Publ. Mat., Vol. EXTRA (2014), 309–331. |
[29] |
A. Nicholson,
An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9-65.
doi: 10.1071/ZO9540009. |
[30] |
R. S. Patterson, D. E. Weidhaass, H. R. Ford and C. S. Lofgren,
Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males, Science, 168 (1970), 1368-1369.
doi: 10.1126/science.168.3937.1368. |
[31] |
G. Röst and J. Wu,
Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.
doi: 10.1098/rspa.2007.1890. |
[32] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[33] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[34] |
J. Yu,
Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[35] |
J. Yu and J. Li,
Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.
doi: 10.1080/17513758.2019.1682201. |
[36] |
J. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[37] |
D. Zhang, X. Zheng, Z. Xi, K. Bourtzis and J. R. L. Gilles,
Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), 1-13.
doi: 10.1371/journal.pone.0121126. |
[38] |
B. Zheng, M. Tang and J. Yu,
Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.
doi: 10.1137/13093354X. |
[39] |
B. Zheng, M. Tang, J. Yu and J. Qiu,
Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.
doi: 10.1007/s00285-017-1142-5. |
show all references
References:
[1] |
L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson,
Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector Borne Zoonotic Diseases, 10 (2010), 295-311.
doi: 10.1089/vbz.2009.0014. |
[2] |
R. Anguelov, Y. Dumont and J. Lubuma,
Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64 (2012), 374-389.
doi: 10.1016/j.camwa.2012.02.068. |
[3] |
J. R. Beddington and R. M. May,
Time delays are not necessarily destabilizing, Math. Biosci., 27 (1975), 109-117.
doi: 10.1016/0025-5564(75)90028-0. |
[4] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[5] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2$^nd$ edition, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[6] |
L. Cai, S. Ai and J. Li,
Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.
doi: 10.1137/13094102X. |
[7] |
L. Cai, J. Huang, X. Song and Y. Zhang,
Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 6279-6295.
doi: 10.3934/dcdsb.2019139. |
[8] |
N. Chitnis, J. M. Hyman and J. M. Cushing,
Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0. |
[9] |
H. Diaz, A. A. Ramirez, A. Olarte and C. Clavijo,
A model for the control of malaria using genetically modified vectors, J. Theoret. Biol., 276 (2011), 57-66.
doi: 10.1016/j.jtbi.2011.01.053. |
[10] |
V. A. Dyck, J. Hendrichs and A. S. Robinson (eds.), Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, 2005. Google Scholar |
[11] |
K. R. Fister, M. L. Mccarthy, S. F. Oppenheimer and C. Collins,
Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201-212.
doi: 10.1016/j.mbs.2013.05.008. |
[12] |
J. Hale, Theory of Functional Differential Equations, 2$^nd$ edition, Springer-Verlag, New York-Heidelberg, 1977. |
[13] |
L. Hu, M. Tang, Z. Wu, Z. Xi and J. Yu,
The threshold infection level for Wolbachia invasion in random environments, J. Differential Equations, 266 (2019), 4377-4393.
doi: 10.1016/j.jde.2018.09.035. |
[14] |
M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu,
Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theoret. Biol., 440 (2018), 1-11.
doi: 10.1016/j.jtbi.2017.12.012. |
[15] |
M. Huang, M. Tang and J. Yu,
Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77-96.
doi: 10.1007/s11425-014-4934-8. |
[16] |
M. Huang, M. Tang, J. Yu and B. Zheng,
The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Biosci. Eng., 16 (2019), 4741-4757.
doi: 10.3934/mbe.2019238. |
[17] |
M. Huang, M. Tang, J. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Dicrete Contin. Dyn. Syst.
doi: 10.3934/dcds.2020042. |
[18] |
M. Huang, J. Yu, L. Hu and B. Zheng,
Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249-1266.
doi: 10.1007/s11425-016-5149-y. |
[19] |
Y. Hui, G. Lin and Q. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Math. Biosci. Eng., 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[20] |
G. E. Hutchinson,
Circular causal systems in ecology, Ann. NY. Acad. Sci., 50 (1948), 221-246.
doi: 10.1111/j.1749-6632.1948.tb39854.x. |
[21] |
G. E. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, Conn., 1978.
![]() |
[22] |
A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 1, Springer, Berlin, 1992,164–224.
doi: 10.1007/978-3-642-61243-5. |
[23] |
J. Li,
New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.
doi: 10.1080/17513758.2016.1216613. |
[24] |
J. Li, M. Han and J. Yu,
Simple paratransgenic mosquitoes models and their dynamics, Math. Biosci., 306 (2018), 20-31.
doi: 10.1016/j.mbs.2018.10.005. |
[25] |
Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu and et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), E3301.
doi: 10.1371/journal.pntd.0003301. |
[26] |
F. Liu, C. Yao, P. Lin and C. Zhou, Studies on life table of the nature population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni., 31 (1992), 84-93. Google Scholar |
[27] |
Z.-W Liu, Y.-Y Zhang and Y.-Z Yang, Population dynamics of Aedes (stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274-280. Google Scholar |
[28] |
E. Liz, Delayed logistic population models revisited, Publ. Mat., Vol. EXTRA (2014), 309–331. |
[29] |
A. Nicholson,
An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9-65.
doi: 10.1071/ZO9540009. |
[30] |
R. S. Patterson, D. E. Weidhaass, H. R. Ford and C. S. Lofgren,
Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males, Science, 168 (1970), 1368-1369.
doi: 10.1126/science.168.3937.1368. |
[31] |
G. Röst and J. Wu,
Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655-2669.
doi: 10.1098/rspa.2007.1890. |
[32] |
S. Ruan and J. Wei,
On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874.
|
[33] |
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[34] |
J. Yu,
Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[35] |
J. Yu and J. Li,
Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.
doi: 10.1080/17513758.2019.1682201. |
[36] |
J. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[37] |
D. Zhang, X. Zheng, Z. Xi, K. Bourtzis and J. R. L. Gilles,
Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), 1-13.
doi: 10.1371/journal.pone.0121126. |
[38] |
B. Zheng, M. Tang and J. Yu,
Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743-770.
doi: 10.1137/13093354X. |
[39] |
B. Zheng, M. Tang, J. Yu and J. Qiu,
Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.
doi: 10.1007/s00285-017-1142-5. |





Para. | Definition | Range | Reference |
Number of offsprings produced per | [0.9043, 6.4594] | [27,37] | |
individual, per unit of time | |||
Average maturation period of wild | [22.6, 54.6] | [25,26] | |
mosquitoes (day) | |||
Survival rate of the immature | 0.05 | [26] | |
mosquitoes |
|||
Death rate of wild mosquitoes |
[0.0198, 0.1368] | [27] | |
Death rate of sterile mosquitoes |
1/7 | [2,8] | |
Carrying capacity parameter of wild | 0.0025 | Given | |
mosquitoes |
Para. | Definition | Range | Reference |
Number of offsprings produced per | [0.9043, 6.4594] | [27,37] | |
individual, per unit of time | |||
Average maturation period of wild | [22.6, 54.6] | [25,26] | |
mosquitoes (day) | |||
Survival rate of the immature | 0.05 | [26] | |
mosquitoes |
|||
Death rate of wild mosquitoes |
[0.0198, 0.1368] | [27] | |
Death rate of sterile mosquitoes |
1/7 | [2,8] | |
Carrying capacity parameter of wild | 0.0025 | Given | |
mosquitoes |
[1] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[2] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[3] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[8] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[9] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[10] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[11] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[12] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[13] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[14] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[15] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[16] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[17] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[18] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[19] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[20] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]