-
Previous Article
Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior
- DCDS-B Home
- This Issue
-
Next Article
Effects of travel frequency on the persistence of mosquito-borne diseases
Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation
Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
$ \left\{\;\; \begin{aligned} n_t + u \cdot \nabla n &\;\; = \;\; \Delta n - \nabla \cdot (nS(x,n,c) \nabla c), \\ c_t + u\cdot \nabla c &\;\; = \;\; \Delta c - n f(c), \\ u_t + (u\cdot \nabla) u &\;\; = \;\; \Delta u + \nabla P + n \nabla \phi, \;\;\;\;\;\; \nabla \cdot u = 0, \;\;\;\;\;\; \end{aligned} \right. \tag{$\star$} $ |
$ n $ |
$ c $ |
$ u $ |
$ \Omega \subseteq \mathbb{R}^2 $ |
$ S $ |
$ \mathbb{R}^{2\times2} $ |
$ S $ |
$ \star $ |
$ S $ |
$ \star $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
X. Cao,
Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.
doi: 10.1016/j.jde.2016.09.007. |
[3] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2. |
[4] |
M. Chae, K. Kang and J. Lee,
Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[5] |
S.-Y. A. Chang and P. C. Yang,
Conformal deformation of metrics on $S^2$, J. Differential Geom., 27 (1988), 259-296.
doi: 10.4310/jdg/1214441783. |
[6] |
C. Dellacherie and P.-A. Meyer, Probabilities and Potential, North Holland Mathematics Studies, Vol. 29, North-Holland Publishing Co., Amsterdam-New York, 1978. |
[7] |
C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), 098103.
doi: 10.1103/PhysRevLett.93.098103. |
[8] |
R. Duan, A. Lorz and P. Markowich,
Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[9] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[10] |
T. Li, A. Suen, M. Winkler and C. Xue,
Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., 25 (2015), 721-746.
doi: 10.1142/S0218202515500177. |
[11] |
J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 2011,643–652.
doi: 10.1016/j.anihpc.2011.04.005. |
[12] |
J. Moser,
A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[13] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[14] |
N. S. Trudinger,
On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
doi: 10.1512/iumj.1968.17.17028. |
[15] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. U.S.A., 102, (2005) 2277–2282.
doi: 10.1073/pnas.0406724102. |
[16] |
Y. Wang, M. Winkler and and Z. Xiang,
Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421-466.
|
[17] |
Y. Wang and Z. Xiang,
Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609.
doi: 10.1016/j.jde.2015.08.027. |
[18] |
Y. Wang and Z. Xiang,
Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differential Equations, 261 (2016), 4944-4973.
doi: 10.1016/j.jde.2016.07.010. |
[19] |
M. Winkler, Can fluid interaction influence the critical mass for taxis-driven blow-up in bounded planar domains?, Acta Appl. Math., published online, (2020).
doi: 10.1007/s10440-020-00312-2. |
[20] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[21] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[22] |
M. Winkler,
Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity., Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828.
doi: 10.1007/s00526-015-0922-2. |
[23] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[24] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis–Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[25] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[26] |
M. Winkler,
Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.
doi: 10.1007/s00028-018-0440-8. |
[27] |
M. Winkler, Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, in International Mathematics Research Notices, (2019), rnz056.
doi: 10.1093/imrn/rnz056. |
[28] |
C. Xue,
Macroscopic equations for bacterial chemotaxis: Integration of detailed biochemistry of cell signaling, J. Math. Biol., 70 (2015), 1-44.
doi: 10.1007/s00285-013-0748-5. |
[29] |
C. Xue and H. G. Othmer,
Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[30] |
Q. Zhang and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 259 (2015), 3730-3754.
doi: 10.1016/j.jde.2015.05.012. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
X. Cao,
Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.
doi: 10.1016/j.jde.2016.09.007. |
[3] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2. |
[4] |
M. Chae, K. Kang and J. Lee,
Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[5] |
S.-Y. A. Chang and P. C. Yang,
Conformal deformation of metrics on $S^2$, J. Differential Geom., 27 (1988), 259-296.
doi: 10.4310/jdg/1214441783. |
[6] |
C. Dellacherie and P.-A. Meyer, Probabilities and Potential, North Holland Mathematics Studies, Vol. 29, North-Holland Publishing Co., Amsterdam-New York, 1978. |
[7] |
C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), 098103.
doi: 10.1103/PhysRevLett.93.098103. |
[8] |
R. Duan, A. Lorz and P. Markowich,
Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[9] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[10] |
T. Li, A. Suen, M. Winkler and C. Xue,
Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., 25 (2015), 721-746.
doi: 10.1142/S0218202515500177. |
[11] |
J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 2011,643–652.
doi: 10.1016/j.anihpc.2011.04.005. |
[12] |
J. Moser,
A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[13] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[14] |
N. S. Trudinger,
On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
doi: 10.1512/iumj.1968.17.17028. |
[15] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. U.S.A., 102, (2005) 2277–2282.
doi: 10.1073/pnas.0406724102. |
[16] |
Y. Wang, M. Winkler and and Z. Xiang,
Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421-466.
|
[17] |
Y. Wang and Z. Xiang,
Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609.
doi: 10.1016/j.jde.2015.08.027. |
[18] |
Y. Wang and Z. Xiang,
Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, J. Differential Equations, 261 (2016), 4944-4973.
doi: 10.1016/j.jde.2016.07.010. |
[19] |
M. Winkler, Can fluid interaction influence the critical mass for taxis-driven blow-up in bounded planar domains?, Acta Appl. Math., published online, (2020).
doi: 10.1007/s10440-020-00312-2. |
[20] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[21] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[22] |
M. Winkler,
Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity., Calc. Var. Partial Differential Equations, 54 (2015), 3789-3828.
doi: 10.1007/s00526-015-0922-2. |
[23] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[24] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis–Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[25] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[26] |
M. Winkler,
Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.
doi: 10.1007/s00028-018-0440-8. |
[27] |
M. Winkler, Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, in International Mathematics Research Notices, (2019), rnz056.
doi: 10.1093/imrn/rnz056. |
[28] |
C. Xue,
Macroscopic equations for bacterial chemotaxis: Integration of detailed biochemistry of cell signaling, J. Math. Biol., 70 (2015), 1-44.
doi: 10.1007/s00285-013-0748-5. |
[29] |
C. Xue and H. G. Othmer,
Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[30] |
Q. Zhang and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 259 (2015), 3730-3754.
doi: 10.1016/j.jde.2015.05.012. |
[1] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[2] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[3] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[4] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[5] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[6] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[7] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[8] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[9] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[10] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[11] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[12] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[13] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[14] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[15] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[16] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[17] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[18] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[19] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[20] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]