This is part Ⅱ of our study on the free boundary problems with nonlocal and local diffusions. In part Ⅰ, we obtained the existence, uniqueness, regularity and estimates of global solution. In part Ⅱ here, we show a spreading-vanishing dichotomy, and provide the criteria of spreading and vanishing, as well as the long time behavior of solution when spreading happens.
Citation: |
[1] |
P. Bates and G. Y. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007.![]() ![]() ![]() |
[2] |
H. Berestycki, J. Coville and H.-H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.
doi: 10.1016/j.jfa.2016.05.017.![]() ![]() ![]() |
[3] |
J.-F. Cao, Y. Du, F. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013.![]() ![]() ![]() |
[4] |
J. F. Cao, W. T. Li and J. Wang, A Lotka-Volterra competition model with nonlocal diffusion and free boundaries, preprint, arXiv: 1905.09584, 2019.
![]() |
[5] |
J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003.![]() ![]() ![]() |
[6] |
Y. Du, M. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1, 2019.
![]() |
[7] |
J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.
doi: 10.1007/s10884-012-9267-0.![]() ![]() ![]() |
[8] |
L. Li, W. Sheng and M. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), 123646, 27 pp.
doi: 10.1016/j.jmaa.2019.123646.![]() ![]() ![]() |
[9] |
J. Wang and M. Wang, Free boundary problems with nonlocal and local diffusions Ⅰ: Global solution, J. Math. Anal. Appl., (2020).
doi: 10.1016/j.jmaa.2020.123974.![]() ![]() |
[10] |
M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.
doi: 10.1016/j.jfa.2015.10.014.![]() ![]() ![]() |
[11] |
M. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.
doi: 10.1016/j.jde.2014.10.022.![]() ![]() ![]() |
[12] |
M. Wang and Q. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Contin. Dyn. Syst., 38 (2018), 2591-2607.
doi: 10.3934/dcds.2018109.![]() ![]() ![]() |
[13] |
M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differental Equations, 264 (2018), 3527-3558.
doi: 10.1016/j.jde.2017.11.027.![]() ![]() ![]() |
[14] |
M. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.
doi: 10.1016/j.nonrwa.2015.01.004.![]() ![]() ![]() |
[15] |
M. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67 (2016), Art. 132, 24 pp.
doi: 10.1007/s00033-016-0729-9.![]() ![]() ![]() |
[16] |
M. Wang and J. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.
doi: 10.1007/s10884-014-9363-4.![]() ![]() ![]() |
[17] |
M. Wang and J. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.
doi: 10.1007/s10884-015-9503-5.![]() ![]() ![]() |
[18] |
Y. Zhang and M. Wang, A free boundary problem of the ratio-dependent prey-predator model, Appl. Anal., 94 (2015), 2147-2167.
doi: 10.1080/00036811.2014.979806.![]() ![]() ![]() |
[19] |
Y. Zhao and M. Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.
doi: 10.1093/imamat/hxv035.![]() ![]() ![]() |