\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior

  • * Corresponding author: Mingxin Wang

    * Corresponding author: Mingxin Wang

This work is supported by NSFC Grants 11771110, 11971128

Abstract Full Text(HTML) Related Papers Cited by
  • This is part Ⅱ of our study on the free boundary problems with nonlocal and local diffusions. In part Ⅰ, we obtained the existence, uniqueness, regularity and estimates of global solution. In part Ⅱ here, we show a spreading-vanishing dichotomy, and provide the criteria of spreading and vanishing, as well as the long time behavior of solution when spreading happens.

    Mathematics Subject Classification: Primary: 35K57, 35R09, 35R20, 35R35, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Bates and G. Y. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.
    [2] H. BerestyckiJ. Coville and H.-H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701-2751.  doi: 10.1016/j.jfa.2016.05.017.
    [3] J.-F. CaoY. DuF. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.  doi: 10.1016/j.jfa.2019.02.013.
    [4] J. F. Cao, W. T. Li and J. Wang, A Lotka-Volterra competition model with nonlocal diffusion and free boundaries, preprint, arXiv: 1905.09584, 2019.
    [5] J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.
    [6] Y. Du, M. Wang and M. Zhao, Two species nonlocal diffusion systems with free boundaries, preprint, arXiv: 1907.04542v1, 2019.
    [7] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.
    [8] L. Li, W. Sheng and M. Wang, Systems with nonlocal vs. local diffusions and free boundaries, J. Math. Anal. Appl., 483 (2020), 123646, 27 pp. doi: 10.1016/j.jmaa.2019.123646.
    [9] J. Wang and M. Wang, Free boundary problems with nonlocal and local diffusions Ⅰ: Global solution, J. Math. Anal. Appl., (2020). doi: 10.1016/j.jmaa.2020.123974.
    [10] M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.
    [11] M. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.  doi: 10.1016/j.jde.2014.10.022.
    [12] M. Wang and Q. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Contin. Dyn. Syst., 38 (2018), 2591-2607.  doi: 10.3934/dcds.2018109.
    [13] M. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with different free boundaries, J. Differental Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.
    [14] M. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.
    [15] M. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67 (2016), Art. 132, 24 pp. doi: 10.1007/s00033-016-0729-9.
    [16] M. Wang and J. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.
    [17] M. Wang and J. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.
    [18] Y. Zhang and M. Wang, A free boundary problem of the ratio-dependent prey-predator model, Appl. Anal., 94 (2015), 2147-2167.  doi: 10.1080/00036811.2014.979806.
    [19] Y. Zhao and M. Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.  doi: 10.1093/imamat/hxv035.
  • 加载中
SHARE

Article Metrics

HTML views(532) PDF downloads(318) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return