• Previous Article
    Wolbachia infection dynamics in mosquito population with the CI effect suffering by uninfected ova produced by infected females
  • DCDS-B Home
  • This Issue
  • Next Article
    Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior
December  2020, 25(12): 4737-4754. doi: 10.3934/dcdsb.2020122

Periodic solutions for SDEs through upper and lower solutions

1. 

School of Mathematics and Statistics & Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

2. 

School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China

3. 

School of Mathematics, Jilin University, Changchun 130012, China

4. 

State Key Laboratory of Automotive Simulation and Control, Jilin University, 130025, China

* Corresponding author: Yong Li

Received  November 2019 Revised  January 2020 Published  December 2020 Early access  March 2020

Fund Project: The first author is supported NSFC grant 11601043, China Postdoctoral Science Foundation (Grant No. 2016M590243 and 2019T120226). The second author was supported by NSFC grant 11201173. The third author was supported by National Basic Research Program of China (Grant No. 2013CB834100) and NSFC grants 11171132 and 11571065

We study a kind of better recurrence than Kolmogorov's one: periodicity recurrence, which corresponds periodic solutions in distribution for stochastic differential equations. On the basis of technique of upper and lower solutions and comparison principle, we obtain the existence of periodic solutions in distribution for stochastic differential equations (SDEs). Hence this provides an effective method how to study the periodicity of stochastic systems by analyzing deterministic ones. We also illustrate our results.

Citation: Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122
References:
[1]

X. Bai and J. Jiang, Comparison theorem for stochastic functional differential equations and applications, J. Dynam. Differential Equations, 29 (2017), 1-24.  doi: 10.1007/s10884-014-9406-x.

[2]

S. R. Bernfeld and V. Lakshmtkantham, An Introduction to Nonlinear Boundary Value Problems. Mathematics in Science and Engineering, Vol. 109, Academic Press, Inc., New YorkLondon, 1974.

[3]

R. Buckdahn and S. Peng, Ergodic backward stochastic differential equations and associated partial differential equations, in Seminar on Stochastic Analysis: Random Fields and Applications, Vol. 45, Birkhäuser, Basel, 1999, 73–85. doi: 10.1007/978-3-0348-8681-9_6.

[4]

M. R. CândidoJ. Llibre and D. D. Novaes, Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, 30 (2017), 3560-3586.  doi: 10.1088/1361-6544/aa7e95.

[5]

F. ChenY. HanY. Li and X. Yang, Periodic solutions of Fokker-Planck equations, J. Differential Equations, 263 (2017), 285-298.  doi: 10.1016/j.jde.2017.02.032.

[6]

C. FengH. Zhao and B. Zhou, Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations, 251 (2011), 119-149.  doi: 10.1016/j.jde.2011.03.019.

[7]

C. FengY. Wu and H. Zhao, Anticipating random periodic solutions-I. SDEs with multiplicative linear noise, J. Funct. Anal., 271 (2016), 365-417.  doi: 10.1016/j.jfa.2016.04.027.

[8]

J.-M. Fokam, Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations, Proc. Amer. Math. Soc., 145 (2017), 4283-4297.  doi: 10.1090/proc/12760.

[9]

P. Gao, Some periodic type solutions for stochastic reaction-diffusion equation with cubic nonlinearities, Comput. Math. Appl., 74 (2017), 2281-2297.  doi: 10.1016/j.camwa.2017.07.005.

[10]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633. 

[11]

M. Ji, W. Qi, Z. Shen and Y. Yi, Existence of periodic probability solutions to Fokker-Planck equations with applications, J Funct. Anal., 277 (2019), 108281, 41 pp. doi: 10.1016/j.jfa.2019.108281.

[12]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[13]

S. K. Kaul and A. S. Vatsala, Monotone method for integro-differential equation with periodic boundary conditions, Appl. Anal., 21 (1986), 297-305.  doi: 10.1080/00036818608839598.

[14]

R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2$^nd$ edition, Stochastic Modelling and Applied Probability, Vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[15]

M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, The Operator of Translations Along Trajectories of Differential Equations. Translations of Mathematical Monographs, Vol. 19, American Mathematical Society, Providence, R.I., 1968. doi: 10.1090/mmono/019.

[16]

V. Lakshmikantham and S. Leela, Remarks on first and second periodic boundary value problems, Nonlinear Anal., 8 (1984), 281-287.  doi: 10.1016/0362-546X(84)90050-6.

[17]

Y. LiH. Z. WangX. R. Lü and X. G. Lu, Periodic solutions for functional-differential equations with infinite lead and delay, Appl. Math. Comput., 70 (1995), 1-28.  doi: 10.1016/0096-3003(94)00131-M.

[18]

Y. Li, F. Cong, Z. Lin and W. Liu, Periodic solutions for evolution equations, Nonlinear Anal., 36 (1999) 275–293. doi: 10.1016/S0362-546X(97)00626-3.

[19]

Z. Liu and K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115-1149.  doi: 10.1016/j.jfa.2013.11.011.

[20]

Z. Liu and W. Wang, Favard separation method for almost periodic stochastic differential equations, J. Differential Equations, 260 (2016), 8109-8136.  doi: 10.1016/j.jde.2016.02.019.

[21]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chinchester, 1997.

[22]

O. Mellah and P. R. De Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Differential Equations, 91 (2013), 7 pp.

[23]

S. E. A. Mohammed, Stochastic Functional Differential Equations. Research Notes in Mathematics, Vol. 99, Pitman (Advanced Publishing Program), Boston, MA, 1984.

[24]

S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.  doi: 10.1016/j.spa.2005.08.004.

[25]

G. Da Prato and C. Tudor, Periodic and almost periodic solutions for semilinear stochastic equations, Stochastic Anal. Appl., 13 (1995), 13-33.  doi: 10.1080/07362999508809380.

[26]

V. ŠedaJ. J. Nieto and M. Gera, Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput., 48 (1992), 71-82.  doi: 10.1016/0096-3003(92)90019-W.

[27]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.

[28]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.

[29]

C. Tudor, Almost periodic solutions of affine stochastic evolution equations, Stochastics Stochastics Rep., 38 (1992), 251-266.  doi: 10.1080/17442509208833758.

[30]

H. Zhao and Z.-H. Zheng, Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038.  doi: 10.1016/j.jde.2008.10.011.

show all references

References:
[1]

X. Bai and J. Jiang, Comparison theorem for stochastic functional differential equations and applications, J. Dynam. Differential Equations, 29 (2017), 1-24.  doi: 10.1007/s10884-014-9406-x.

[2]

S. R. Bernfeld and V. Lakshmtkantham, An Introduction to Nonlinear Boundary Value Problems. Mathematics in Science and Engineering, Vol. 109, Academic Press, Inc., New YorkLondon, 1974.

[3]

R. Buckdahn and S. Peng, Ergodic backward stochastic differential equations and associated partial differential equations, in Seminar on Stochastic Analysis: Random Fields and Applications, Vol. 45, Birkhäuser, Basel, 1999, 73–85. doi: 10.1007/978-3-0348-8681-9_6.

[4]

M. R. CândidoJ. Llibre and D. D. Novaes, Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, 30 (2017), 3560-3586.  doi: 10.1088/1361-6544/aa7e95.

[5]

F. ChenY. HanY. Li and X. Yang, Periodic solutions of Fokker-Planck equations, J. Differential Equations, 263 (2017), 285-298.  doi: 10.1016/j.jde.2017.02.032.

[6]

C. FengH. Zhao and B. Zhou, Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations, 251 (2011), 119-149.  doi: 10.1016/j.jde.2011.03.019.

[7]

C. FengY. Wu and H. Zhao, Anticipating random periodic solutions-I. SDEs with multiplicative linear noise, J. Funct. Anal., 271 (2016), 365-417.  doi: 10.1016/j.jfa.2016.04.027.

[8]

J.-M. Fokam, Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations, Proc. Amer. Math. Soc., 145 (2017), 4283-4297.  doi: 10.1090/proc/12760.

[9]

P. Gao, Some periodic type solutions for stochastic reaction-diffusion equation with cubic nonlinearities, Comput. Math. Appl., 74 (2017), 2281-2297.  doi: 10.1016/j.camwa.2017.07.005.

[10]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633. 

[11]

M. Ji, W. Qi, Z. Shen and Y. Yi, Existence of periodic probability solutions to Fokker-Planck equations with applications, J Funct. Anal., 277 (2019), 108281, 41 pp. doi: 10.1016/j.jfa.2019.108281.

[12]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[13]

S. K. Kaul and A. S. Vatsala, Monotone method for integro-differential equation with periodic boundary conditions, Appl. Anal., 21 (1986), 297-305.  doi: 10.1080/00036818608839598.

[14]

R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2$^nd$ edition, Stochastic Modelling and Applied Probability, Vol. 66, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[15]

M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, The Operator of Translations Along Trajectories of Differential Equations. Translations of Mathematical Monographs, Vol. 19, American Mathematical Society, Providence, R.I., 1968. doi: 10.1090/mmono/019.

[16]

V. Lakshmikantham and S. Leela, Remarks on first and second periodic boundary value problems, Nonlinear Anal., 8 (1984), 281-287.  doi: 10.1016/0362-546X(84)90050-6.

[17]

Y. LiH. Z. WangX. R. Lü and X. G. Lu, Periodic solutions for functional-differential equations with infinite lead and delay, Appl. Math. Comput., 70 (1995), 1-28.  doi: 10.1016/0096-3003(94)00131-M.

[18]

Y. Li, F. Cong, Z. Lin and W. Liu, Periodic solutions for evolution equations, Nonlinear Anal., 36 (1999) 275–293. doi: 10.1016/S0362-546X(97)00626-3.

[19]

Z. Liu and K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115-1149.  doi: 10.1016/j.jfa.2013.11.011.

[20]

Z. Liu and W. Wang, Favard separation method for almost periodic stochastic differential equations, J. Differential Equations, 260 (2016), 8109-8136.  doi: 10.1016/j.jde.2016.02.019.

[21]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chinchester, 1997.

[22]

O. Mellah and P. R. De Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Differential Equations, 91 (2013), 7 pp.

[23]

S. E. A. Mohammed, Stochastic Functional Differential Equations. Research Notes in Mathematics, Vol. 99, Pitman (Advanced Publishing Program), Boston, MA, 1984.

[24]

S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.  doi: 10.1016/j.spa.2005.08.004.

[25]

G. Da Prato and C. Tudor, Periodic and almost periodic solutions for semilinear stochastic equations, Stochastic Anal. Appl., 13 (1995), 13-33.  doi: 10.1080/07362999508809380.

[26]

V. ŠedaJ. J. Nieto and M. Gera, Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput., 48 (1992), 71-82.  doi: 10.1016/0096-3003(92)90019-W.

[27]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.

[28]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.

[29]

C. Tudor, Almost periodic solutions of affine stochastic evolution equations, Stochastics Stochastics Rep., 38 (1992), 251-266.  doi: 10.1080/17442509208833758.

[30]

H. Zhao and Z.-H. Zheng, Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038.  doi: 10.1016/j.jde.2008.10.011.

[1]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[2]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[3]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[4]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[5]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[6]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[7]

Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315

[8]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[9]

Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 617-633. doi: 10.3934/dcdsb.2019257

[10]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[11]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[12]

Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209-218. doi: 10.3934/proc.2011.2011.209

[13]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[14]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[15]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[16]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[17]

Robert Elliott, Dilip B. Madan, Tak Kuen Siu. Lower and upper pricing of financial assets. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 45-66. doi: 10.3934/puqr.2022004

[18]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[19]

Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507

[20]

Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial and Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (314)
  • HTML views (350)
  • Cited by (1)

Other articles
by authors

[Back to Top]