-
Previous Article
Wolbachia infection dynamics in mosquito population with the CI effect suffering by uninfected ova produced by infected females
- DCDS-B Home
- This Issue
-
Next Article
Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior
Periodic solutions for SDEs through upper and lower solutions
1. | School of Mathematics and Statistics & Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China |
2. | School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China |
3. | School of Mathematics, Jilin University, Changchun 130012, China |
4. | State Key Laboratory of Automotive Simulation and Control, Jilin University, 130025, China |
We study a kind of better recurrence than Kolmogorov's one: periodicity recurrence, which corresponds periodic solutions in distribution for stochastic differential equations. On the basis of technique of upper and lower solutions and comparison principle, we obtain the existence of periodic solutions in distribution for stochastic differential equations (SDEs). Hence this provides an effective method how to study the periodicity of stochastic systems by analyzing deterministic ones. We also illustrate our results.
References:
[1] |
X. Bai and J. Jiang,
Comparison theorem for stochastic functional differential equations and applications, J. Dynam. Differential Equations, 29 (2017), 1-24.
doi: 10.1007/s10884-014-9406-x. |
[2] |
S. R. Bernfeld and V. Lakshmtkantham, An Introduction to Nonlinear Boundary Value Problems. Mathematics in Science and Engineering, Vol. 109, Academic Press, Inc., New YorkLondon, 1974. |
[3] |
R. Buckdahn and S. Peng, Ergodic backward stochastic differential equations and associated partial differential equations, in Seminar on Stochastic Analysis: Random Fields and Applications, Vol. 45, Birkhäuser, Basel, 1999, 73–85.
doi: 10.1007/978-3-0348-8681-9_6. |
[4] |
M. R. Cândido, J. Llibre and D. D. Novaes,
Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, 30 (2017), 3560-3586.
doi: 10.1088/1361-6544/aa7e95. |
[5] |
F. Chen, Y. Han, Y. Li and X. Yang,
Periodic solutions of Fokker-Planck equations, J. Differential Equations, 263 (2017), 285-298.
doi: 10.1016/j.jde.2017.02.032. |
[6] |
C. Feng, H. Zhao and B. Zhou,
Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations, 251 (2011), 119-149.
doi: 10.1016/j.jde.2011.03.019. |
[7] |
C. Feng, Y. Wu and H. Zhao,
Anticipating random periodic solutions-I. SDEs with multiplicative linear noise, J. Funct. Anal., 271 (2016), 365-417.
doi: 10.1016/j.jfa.2016.04.027. |
[8] |
J.-M. Fokam,
Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations, Proc. Amer. Math. Soc., 145 (2017), 4283-4297.
doi: 10.1090/proc/12760. |
[9] |
P. Gao,
Some periodic type solutions for stochastic reaction-diffusion equation with cubic nonlinearities, Comput. Math. Appl., 74 (2017), 2281-2297.
doi: 10.1016/j.camwa.2017.07.005. |
[10] |
N. Ikeda and S. Watanabe,
A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633.
|
[11] |
M. Ji, W. Qi, Z. Shen and Y. Yi, Existence of periodic probability solutions to Fokker-Planck equations with applications, J Funct. Anal., 277 (2019), 108281, 41 pp.
doi: 10.1016/j.jfa.2019.108281. |
[12] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[13] |
S. K. Kaul and A. S. Vatsala,
Monotone method for integro-differential equation with periodic boundary conditions, Appl. Anal., 21 (1986), 297-305.
doi: 10.1080/00036818608839598. |
[14] |
R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2$^nd$ edition, Stochastic Modelling and Applied Probability, Vol. 66, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0. |
[15] |
M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, The Operator of Translations Along Trajectories of Differential Equations. Translations of Mathematical Monographs, Vol. 19, American Mathematical Society, Providence, R.I., 1968.
doi: 10.1090/mmono/019. |
[16] |
V. Lakshmikantham and S. Leela,
Remarks on first and second periodic boundary value problems, Nonlinear Anal., 8 (1984), 281-287.
doi: 10.1016/0362-546X(84)90050-6. |
[17] |
Y. Li, H. Z. Wang, X. R. Lü and X. G. Lu,
Periodic solutions for functional-differential equations with infinite lead and delay, Appl. Math. Comput., 70 (1995), 1-28.
doi: 10.1016/0096-3003(94)00131-M. |
[18] |
Y. Li, F. Cong, Z. Lin and W. Liu, Periodic solutions for evolution equations, Nonlinear Anal., 36 (1999) 275–293.
doi: 10.1016/S0362-546X(97)00626-3. |
[19] |
Z. Liu and K. Sun,
Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115-1149.
doi: 10.1016/j.jfa.2013.11.011. |
[20] |
Z. Liu and W. Wang,
Favard separation method for almost periodic stochastic differential equations, J. Differential Equations, 260 (2016), 8109-8136.
doi: 10.1016/j.jde.2016.02.019. |
[21] |
X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chinchester, 1997. |
[22] |
O. Mellah and P. R. De Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Differential Equations, 91 (2013), 7 pp. |
[23] |
S. E. A. Mohammed, Stochastic Functional Differential Equations. Research Notes in Mathematics, Vol. 99, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[24] |
S. Peng and X. Zhu,
Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.
doi: 10.1016/j.spa.2005.08.004. |
[25] |
G. Da Prato and C. Tudor,
Periodic and almost periodic solutions for semilinear stochastic equations, Stochastic Anal. Appl., 13 (1995), 13-33.
doi: 10.1080/07362999508809380. |
[26] |
V. Šeda, J. J. Nieto and M. Gera,
Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput., 48 (1992), 71-82.
doi: 10.1016/0096-3003(92)90019-W. |
[27] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. |
[28] |
M. Tarallo and Z. Zhou,
Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.
doi: 10.3934/dcds.2018014. |
[29] |
C. Tudor,
Almost periodic solutions of affine stochastic evolution equations, Stochastics Stochastics Rep., 38 (1992), 251-266.
doi: 10.1080/17442509208833758. |
[30] |
H. Zhao and Z.-H. Zheng,
Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038.
doi: 10.1016/j.jde.2008.10.011. |
show all references
References:
[1] |
X. Bai and J. Jiang,
Comparison theorem for stochastic functional differential equations and applications, J. Dynam. Differential Equations, 29 (2017), 1-24.
doi: 10.1007/s10884-014-9406-x. |
[2] |
S. R. Bernfeld and V. Lakshmtkantham, An Introduction to Nonlinear Boundary Value Problems. Mathematics in Science and Engineering, Vol. 109, Academic Press, Inc., New YorkLondon, 1974. |
[3] |
R. Buckdahn and S. Peng, Ergodic backward stochastic differential equations and associated partial differential equations, in Seminar on Stochastic Analysis: Random Fields and Applications, Vol. 45, Birkhäuser, Basel, 1999, 73–85.
doi: 10.1007/978-3-0348-8681-9_6. |
[4] |
M. R. Cândido, J. Llibre and D. D. Novaes,
Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, 30 (2017), 3560-3586.
doi: 10.1088/1361-6544/aa7e95. |
[5] |
F. Chen, Y. Han, Y. Li and X. Yang,
Periodic solutions of Fokker-Planck equations, J. Differential Equations, 263 (2017), 285-298.
doi: 10.1016/j.jde.2017.02.032. |
[6] |
C. Feng, H. Zhao and B. Zhou,
Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations, 251 (2011), 119-149.
doi: 10.1016/j.jde.2011.03.019. |
[7] |
C. Feng, Y. Wu and H. Zhao,
Anticipating random periodic solutions-I. SDEs with multiplicative linear noise, J. Funct. Anal., 271 (2016), 365-417.
doi: 10.1016/j.jfa.2016.04.027. |
[8] |
J.-M. Fokam,
Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations, Proc. Amer. Math. Soc., 145 (2017), 4283-4297.
doi: 10.1090/proc/12760. |
[9] |
P. Gao,
Some periodic type solutions for stochastic reaction-diffusion equation with cubic nonlinearities, Comput. Math. Appl., 74 (2017), 2281-2297.
doi: 10.1016/j.camwa.2017.07.005. |
[10] |
N. Ikeda and S. Watanabe,
A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633.
|
[11] |
M. Ji, W. Qi, Z. Shen and Y. Yi, Existence of periodic probability solutions to Fokker-Planck equations with applications, J Funct. Anal., 277 (2019), 108281, 41 pp.
doi: 10.1016/j.jfa.2019.108281. |
[12] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[13] |
S. K. Kaul and A. S. Vatsala,
Monotone method for integro-differential equation with periodic boundary conditions, Appl. Anal., 21 (1986), 297-305.
doi: 10.1080/00036818608839598. |
[14] |
R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2$^nd$ edition, Stochastic Modelling and Applied Probability, Vol. 66, Springer, Heidelberg, 2012.
doi: 10.1007/978-3-642-23280-0. |
[15] |
M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, The Operator of Translations Along Trajectories of Differential Equations. Translations of Mathematical Monographs, Vol. 19, American Mathematical Society, Providence, R.I., 1968.
doi: 10.1090/mmono/019. |
[16] |
V. Lakshmikantham and S. Leela,
Remarks on first and second periodic boundary value problems, Nonlinear Anal., 8 (1984), 281-287.
doi: 10.1016/0362-546X(84)90050-6. |
[17] |
Y. Li, H. Z. Wang, X. R. Lü and X. G. Lu,
Periodic solutions for functional-differential equations with infinite lead and delay, Appl. Math. Comput., 70 (1995), 1-28.
doi: 10.1016/0096-3003(94)00131-M. |
[18] |
Y. Li, F. Cong, Z. Lin and W. Liu, Periodic solutions for evolution equations, Nonlinear Anal., 36 (1999) 275–293.
doi: 10.1016/S0362-546X(97)00626-3. |
[19] |
Z. Liu and K. Sun,
Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115-1149.
doi: 10.1016/j.jfa.2013.11.011. |
[20] |
Z. Liu and W. Wang,
Favard separation method for almost periodic stochastic differential equations, J. Differential Equations, 260 (2016), 8109-8136.
doi: 10.1016/j.jde.2016.02.019. |
[21] |
X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chinchester, 1997. |
[22] |
O. Mellah and P. R. De Fitte, Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients, Electron. J. Differential Equations, 91 (2013), 7 pp. |
[23] |
S. E. A. Mohammed, Stochastic Functional Differential Equations. Research Notes in Mathematics, Vol. 99, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[24] |
S. Peng and X. Zhu,
Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.
doi: 10.1016/j.spa.2005.08.004. |
[25] |
G. Da Prato and C. Tudor,
Periodic and almost periodic solutions for semilinear stochastic equations, Stochastic Anal. Appl., 13 (1995), 13-33.
doi: 10.1080/07362999508809380. |
[26] |
V. Šeda, J. J. Nieto and M. Gera,
Periodic boundary value problems for nonlinear higher order ordinary differential equations, Appl. Math. Comput., 48 (1992), 71-82.
doi: 10.1016/0096-3003(92)90019-W. |
[27] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. |
[28] |
M. Tarallo and Z. Zhou,
Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.
doi: 10.3934/dcds.2018014. |
[29] |
C. Tudor,
Almost periodic solutions of affine stochastic evolution equations, Stochastics Stochastics Rep., 38 (1992), 251-266.
doi: 10.1080/17442509208833758. |
[30] |
H. Zhao and Z.-H. Zheng,
Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038.
doi: 10.1016/j.jde.2008.10.011. |
[1] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[2] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[3] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[4] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[5] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[6] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[7] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[8] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[9] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[10] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[11] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[12] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[13] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[14] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[15] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[16] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[17] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[18] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[19] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[20] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]