
-
Previous Article
A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games
- DCDS-B Home
- This Issue
-
Next Article
A continuous-time stochastic model of cell motion in the presence of a chemoattractant
Using automatic differentiation to compute periodic orbits of delay differential equations
Departament de Matemàtiques i Informàtica, Barcelona Graduate School of Mathematics (BGSMath), Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain |
In this paper we focus on the computation of periodic solutions of Delay Differential Equations (DDEs) with constant delays. The method is based on defining a Poincaré section in a suitable functional space and looking for a fixed point of the flow in this section. This is done by applying a Newton method on a suitable discretisation of the section. To avoid computing and storing large matrices we use a GMRES method to solve the linear system because in this case GMRES converges very fast due to the compactness of the flow of the DDE. The derivatives of the Poincaré map are obtained in a simple way, by applying Automatic Differentiation to the numerical integration. The stability of the periodic orbit is also obtained in a very efficient way by means of Arnoldi methods. The examples considered include temporal and spatial Poincaré sections.
References:
[1] |
Z.-Z. Bai,
Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput., 109 (2000), 273-285.
doi: 10.1016/S0096-3003(99)00027-2. |
[2] |
R. Baltensperger, J.-P. Berrut and B. Noël,
Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp., 68 (199), 1109-1120.
doi: 10.1090/S0025-5718-99-01070-4. |
[3] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical
Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. |
[4] |
J. Duintjer Tebbens and G. Meurant,
Any Ritz value behavior is possible for Arnoldi and for GMRES, SIAM J. Matrix Anal. Appl., 33 (2012), 958-978.
doi: 10.1137/110843666. |
[5] |
J. Gimeno, À. Jorba, M. Jorba-Cuscó, N. Miguel and M. Zou, Numerical integration of high order variational equations of ODEs, Preprint, (2020). Google Scholar |
[6] |
A. Griewank and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, SIAM, Philadelphia, Penn., 1991. Google Scholar |
[7] |
A. Griewank, Evaluating Derivatives: Principles and techniques of algorithmic differentiation, Frontiers in Applied Mathematics, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. |
[8] |
J. Hale, Theory of Functional Differential Equations, Second edition, Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. {N}onstiff Problems, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-662-12607-3. |
[10] |
Y. Hino, S. Murakami and T. Naito., Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473. Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[11] |
À. Jorba and M. R. Zou,
A software package for the numerical integration of ODEs by means of high-order Taylor methods, Exp. Math., 14 (2005), 99-117.
doi: 10.1080/10586458.2005.10128904. |
[12] |
G. Kiss and J.-P. Lessard,
Computational fixed-point theory for differential delay equations with multiple time lags, J. Differential Equations, 252 (2012), 3093-3115.
doi: 10.1016/j.jde.2011.11.020. |
[13] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software, Environments, and Tools, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
doi: 10.1137/1.9780898719628. |
[14] |
T. Luzyanina, K. Engelborghs, K. Lust and D. Roose,
Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 2547-2560.
doi: 10.1142/S0218127497001709. |
[15] |
U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation, Software, Environments, and Tools, 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. |
[16] |
R. D. Nussbaum, Differential-delay equations with two time lags, Mem. Amer. Math. Soc., 16 (1978).
doi: 10.1090/memo/0205. |
[17] |
Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, second edition, 2003.
doi: 10.1137/1.9780898718003. |
[18] |
J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, DDE-BIFTOOL v. 3.0 Manual - Bifurcation analysis of delay differential equations, 125 (2015), 265–275, arXiv: 1406.7144. Google Scholar |
[19] |
C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, Ed. Frontières, (1990), 285–300. Google Scholar |
[20] |
A. L. Skubachevskii and H.-O. Walther,
On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations, 18 (2006), 257-355.
doi: 10.1007/s10884-006-9006-5. |
[21] |
D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, Parallel Numerical Algorithms (Hampton, VA, 1994), ICASE/LaRC Interdiscip.
Ser. Sci. Eng., Kluwer Acad. Publ., Dordrecht, 4 (1997), 119–165.
doi: 10.1007/978-94-011-5412-3_5. |
[22] |
R. Szczelina and P. Zgliczyński,
Algorithm for rigorous integration of Delay Differential Equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation, Found. Comput. Math., 18 (2018), 1299-1332.
doi: 10.1007/s10208-017-9369-5. |
show all references
References:
[1] |
Z.-Z. Bai,
Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput., 109 (2000), 273-285.
doi: 10.1016/S0096-3003(99)00027-2. |
[2] |
R. Baltensperger, J.-P. Berrut and B. Noël,
Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp., 68 (199), 1109-1120.
doi: 10.1090/S0025-5718-99-01070-4. |
[3] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical
Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. |
[4] |
J. Duintjer Tebbens and G. Meurant,
Any Ritz value behavior is possible for Arnoldi and for GMRES, SIAM J. Matrix Anal. Appl., 33 (2012), 958-978.
doi: 10.1137/110843666. |
[5] |
J. Gimeno, À. Jorba, M. Jorba-Cuscó, N. Miguel and M. Zou, Numerical integration of high order variational equations of ODEs, Preprint, (2020). Google Scholar |
[6] |
A. Griewank and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, SIAM, Philadelphia, Penn., 1991. Google Scholar |
[7] |
A. Griewank, Evaluating Derivatives: Principles and techniques of algorithmic differentiation, Frontiers in Applied Mathematics, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. |
[8] |
J. Hale, Theory of Functional Differential Equations, Second edition, Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. {N}onstiff Problems, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-662-12607-3. |
[10] |
Y. Hino, S. Murakami and T. Naito., Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473. Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[11] |
À. Jorba and M. R. Zou,
A software package for the numerical integration of ODEs by means of high-order Taylor methods, Exp. Math., 14 (2005), 99-117.
doi: 10.1080/10586458.2005.10128904. |
[12] |
G. Kiss and J.-P. Lessard,
Computational fixed-point theory for differential delay equations with multiple time lags, J. Differential Equations, 252 (2012), 3093-3115.
doi: 10.1016/j.jde.2011.11.020. |
[13] |
R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software, Environments, and Tools, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
doi: 10.1137/1.9780898719628. |
[14] |
T. Luzyanina, K. Engelborghs, K. Lust and D. Roose,
Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 2547-2560.
doi: 10.1142/S0218127497001709. |
[15] |
U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation, Software, Environments, and Tools, 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. |
[16] |
R. D. Nussbaum, Differential-delay equations with two time lags, Mem. Amer. Math. Soc., 16 (1978).
doi: 10.1090/memo/0205. |
[17] |
Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, second edition, 2003.
doi: 10.1137/1.9780898718003. |
[18] |
J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, DDE-BIFTOOL v. 3.0 Manual - Bifurcation analysis of delay differential equations, 125 (2015), 265–275, arXiv: 1406.7144. Google Scholar |
[19] |
C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, Ed. Frontières, (1990), 285–300. Google Scholar |
[20] |
A. L. Skubachevskii and H.-O. Walther,
On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations, 18 (2006), 257-355.
doi: 10.1007/s10884-006-9006-5. |
[21] |
D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, Parallel Numerical Algorithms (Hampton, VA, 1994), ICASE/LaRC Interdiscip.
Ser. Sci. Eng., Kluwer Acad. Publ., Dordrecht, 4 (1997), 119–165.
doi: 10.1007/978-94-011-5412-3_5. |
[22] |
R. Szczelina and P. Zgliczyński,
Algorithm for rigorous integration of Delay Differential Equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation, Found. Comput. Math., 18 (2018), 1299-1332.
doi: 10.1007/s10208-017-9369-5. |







[1] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[2] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[3] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[4] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[5] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[6] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[7] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[8] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[9] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[10] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[11] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[12] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[13] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[14] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[15] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[16] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[17] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[18] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[19] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[20] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]