Advanced Search
Article Contents
Article Contents

A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games

  • * Corresponding author: Xuan Di

    * Corresponding author: Xuan Di 
Abstract Full Text(HTML) Figure(11) / Table(1) Related Papers Cited by
  • This paper proposes an efficient computational framework for longitudinal velocity control of a large number of autonomous vehicles (AVs) and develops a traffic flow theory for AVs. Instead of hypothesizing explicitly how AVs drive, our goal is to design future AVs as rational, utility-optimizing agents that continuously select optimal velocity over a period of planning horizon. With a large number of interacting AVs, this design problem can become computationally intractable. This paper aims to tackle such a challenge by employing mean field approximation and deriving a mean field game (MFG) as the limiting differential game with an infinite number of agents. The proposed micro-macro model allows one to define individuals on a microscopic level as utility-optimizing agents while translating rich microscopic behaviors to macroscopic models. Different from existing studies on the application of MFG to traffic flow models, the present study offers a systematic framework to apply MFG to autonomous vehicle velocity control. The MFG-based AV controller is shown to mitigate traffic jam faster than the LWR-based controller. MFG also embodies classical traffic flow models with behavioral interpretation, thereby providing a new traffic flow theory for AVs.

    Mathematics Subject Classification: Primary: 49N90, 90B20; Secondary: 35Q91.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  From Micro to Macroscopic Traffic Flow Models

    Figure 2.  From an $ N $-car differential game to MFG (adapted from [39])

    Figure 3.  Connections between MFG and LWR

    Figure 4.  [MFG-LWR]

    Figure 5.  Density Evolution of [MFG-NonSeparable] and [MFG-Separable]

    Figure 6.  Fundamental diagram of [MFG-NonSeparable]

    Figure 7.  Density, speed and optimal cost profiles for [MFG-NonSeparable] and [MFG-Separable] at $ t = 0 $ and $ t = 1.5 $

    Figure 8.  Convergence of solution algorithm in $ L^1 $ norm

    Figure 9.  $ N = 21 $ cars' trajectories integrated from the MFE solution of [MFG-NonSeparable]

    Figure 10.  MFE-constructed control cost v.s. best response strategy cost, $ N = 21 $ cars

    Figure 11.  Accuracy v.s. Number of cars

    Table 1.  Classification of macroscopic traffic flow models

    Speed Acceleration rate
    Traditional First-order (e.g., LWR) Higher-order (e.g., PW/ARZ)
    Game-theoretic First-order MFGs Higher-order MFGs
     | Show Table
    DownLoad: CSV
  • [1] Y. AchdouF. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM Journal on Control and Optimization, 50 (2012), 77-109.  doi: 10.1137/100790069.
    [2] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM Journal on Numerical Analysis, 48 (2010), 1136-1162.  doi: 10.1137/090758477.
    [3] Y. Achdou and V. Perez, Iterative strategies for solving linearized discrete mean field games systems, Netw. Heterog. Media, 7 (2012), 197-217.  doi: 10.3934/nhm.2012.7.197.
    [4] O. D. AltanG. WuM. J. BarthK. Boriboonsomsin and J. A. Stark, Glidepath: Eco-friendly automated approach and departure at signalized intersections, IEEE Transactions on Intelligent Vehicles, 2 (2017), 266-277.  doi: 10.1109/TIV.2017.2767289.
    [5] D. M. Ambrose, Existence theory for non-separable mean field games in sobolev spaces, preprint, arXiv: 1807.02223.
    [6] S. Arefizadeh and A. Talebpour, A platooning strategy for automated vehicles in the presence of speed limit fluctuations, Transportation Research Record, 2672 (2018), 154-161.  doi: 10.1177/0361198118784176.
    [7] A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.  doi: 10.1137/S0036139997332099.
    [8] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035.
    [9] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1.
    [10] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Classics in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
    [11] J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, Journal of Optimization Theory and Applications, 167 (2015), 1-26.  doi: 10.1007/s10957-015-0725-9.
    [12] J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 141–171. doi: doi.
    [13] M. Brackstone and M. McDonald, Car-following: A historical review, Transportation Research Part F: Traffic Psychology and Behaviour, 2 (1999), 181-196.  doi: 10.1016/S1369-8478(00)00005-X.
    [14] M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311–1333, arXiv: 1304.5201. doi: 10.3934/dcdsb.2014.19.1311.
    [15] P. Cardaliaguet, Notes on Mean Field Games, Technical report, 2010.
    [16] P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser., Springer, Cham, 11 (2015), 111–158. doi: 10.1007/978-3-319-06917-3_5.
    [17] D. J. ChenJ. LavalZ. D. Zheng and S. Ahn, A behavioral car-following model that captures traffic oscillations, Transportation Research Part B: Methodological, 46 (2012), 744-761.  doi: 10.1016/j.trb.2012.01.009.
    [18] G. Chevalier, J. Le Ny and R. Malhamé, A micro-macro traffic model based on mean-field games, 2015 American Control Conference (ACC), IEEE, (2015), 1983–1988. doi: 10.1109/ACC.2015.7171024.
    [19] Y. T. Chow, W. C. Li, S. Osher and W. T. Yin, Algorithm for Hamilton-Jacobi equations in density space via a generalized Hopf formula, J. Sci. Comput., 80 (2019), 1195–1239, arXiv: 1805.01636. doi: 10.1007/s10915-019-00972-9.
    [20] R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Semin. Mat. Univ. Padova, 131 (2014), 217-235.  doi: 10.4171/RSMUP/131-13.
    [21] R. CouilletS. M. PerlazaH. Tembine and M. Debbah, Electrical vehicles in the smart grid: A mean field game analysis, IEEE Journal on Selected Areas in Communications, 30 (2012), 1086-1096.  doi: 10.1109/JSAC.2012.120707.
    [22] S. CuiB. SeiboldR. Stern and D. B. Work, Stabilizing traffic flow via a single autonomous vehicle: Possibilities and limitations, Intelligent Vehicles Symposium, 2017 IEEE, 4 (2017), 1336-1341.  doi: 10.1109/IVS.2017.7995897.
    [23] C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Research Part B: Methodological, 39 (2005), 187-196.  doi: 10.1016/j.trb.2004.04.003.
    [24] C. F. Daganzo, In traffic flow, cellular automata = kinematic waves, Transportation Research Part B: Methodological, 40 (2006), 396-403.  doi: 10.1016/j.trb.2005.05.004.
    [25] C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks & Heterogeneous Media, 1 (2006), 601-619.  doi: 10.3934/nhm.2006.1.601.
    [26] S. Darbha and K. R. Rajagopal, Intelligent cruise control systems and traffic flow stability, Transportation Research Part C: Emerging Technologies, 7 (1999), 329-352.  doi: 10.1016/S0968-090X(99)00024-8.
    [27] P. DegondJ.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.  doi: 10.1007/s00332-013-9185-2.
    [28] M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for Rational Mechanics and Analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.
    [29] B. Djehiche, A. Tcheukam and H. Tembine, Mean-field-type games in engineering, preprint, arXiv: 1605.03281. doi: 10.3934/ElectrEng.2017.1.18.
    [30] A. Dreves and M. Gerdts, A generalized Nash equilibrium approach for optimal control problems of autonomous cars, Optimal Control Applications and Methods, 39 (2018), 326-342.  doi: 10.1002/oca.2348.
    [31] P. G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, 15 (1981), 105-111.  doi: 10.1016/0191-2615(81)90037-0.
    [32] G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.
    [33] S. Gong and L. L. Du, Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles, Transportation Research part B: Methodological, 116 (2018), 25-61.  doi: 10.1016/j.trb.2018.07.005.
    [34] S. Y. GongJ. L. Shen and L. L. Du, Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon, Transportation Research Part B: Methodological, 94 (2016), 314-334.  doi: 10.1016/j.trb.2016.09.016.
    [35] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., Springer, Berlin, 2003 (2011), 205–266. doi: 10.1007/978-3-642-14660-2_3.
    [36] W. Hackbusch, Multi-Grid Methods and Applications, Springer Science & Business Media, 2013.
    [37] P. HaoG. WuK. Boriboonsomsin and M. J. Barth, Eco-approach and departure (ead) application for actuated signals in real-world traffic, IEEE Transactions on Intelligent Transportation Systems, 20 (2018), 30-40.  doi: 10.1109/TITS.2018.2794509.
    [38] D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.  doi: 10.1007/978-3-642-32160-3_3.
    [39] L. N. Hoang, The new big fish called mean-field game theory, (2014), http://www.science4all.org/article/mean-field-games/, [Online; accessed 4.5.2020].
    [40] K. Huang, X. Di, Q. Du and X. Chen, Stabilizing traffic via autonomous vehicles: A continuum mean field game approach, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, 3269–3274.
    [41] K. HuangX. DiQ. Du and X. Chen, Scalable traffic stability analysis in mixed-autonomy using continuum models, Transportation Research Part C: Emerging Technologies, 111 (2020), 616-630. 
    [42] M. Y. HuangR. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.  doi: 10.4310/CIS.2006.v6.n3.a5.
    [43] Z. Y. HuangH. LamD. J. LeBlanc and D. Zhao, Accelerated evaluation of automated vehicles using piecewise mixture models, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 2845-2855.  doi: 10.1109/TITS.2017.2766172.
    [44] M.-I. M. ImprialouM. QuddusD. E. Pitfield and D. Lord, Re-visiting crash-speed relationships: A new perspective in crash modelling, Accident Analysis & Prevention, 86 (2016), 173-185.  doi: 10.1016/j.aap.2015.10.001.
    [45] P. A. Ioannou and C.-C. Chien, Autonomous intelligent cruise control, IEEE Transactions on Vehicular technology, 42 (1993), 657-672.  doi: 10.1109/25.260745.
    [46] I. G. JinS. S. AvedisovC. R. HeW. B. QinM. Sadeghpour and G. Orosz, Experimental validation of connected automated vehicle design among human-driven vehicles, Transportation Research Part C: Emerging Technologies, 91 (2018), 335-352. 
    [47] I. G. Jin and G. Orosz, Dynamics of connected vehicle systems with delayed acceleration feedback, Transportation Research Part C: Emerging Technologies, 46 (2014), 46-64. 
    [48] I. G. Jin and G. Orosz, Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design, Transportation Research Part C: Emerging Technologies, 95 (2018), 445-459. 
    [49] W.-L. Jin, On the equivalence between continuum and car-following models of traffic flow, Transportation Research Part B: Methodological, 93 (2016), 543-559.  doi: 10.1016/j.trb.2016.08.007.
    [50] W.-L. Jin and H. M. Zhang, On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.  doi: 10.1016/S0191-2615(02)00026-7.
    [51] P. KachrooS. Agarwal and S. Sastry, Inverse problem for non-viscous mean field control: Example from traffic, IEEE Transactions on Automatic Control, 61 (2016), 3412-3421.  doi: 10.1109/TAC.2015.2511929.
    [52] A. KestingM. Treiber and D. Helbing, Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 4585-4605.  doi: 10.1098/rsta.2010.0084.
    [53] A. KestingM. TreiberM. Schönhof and D. Helbing, Adaptive cruise control design for active congestion avoidance, Transportation Research Part C: Emerging Technologies, 16 (2008), 668-683.  doi: 10.1016/j.trc.2007.12.004.
    [54] C. Kim and R. Langari, Game theory based autonomous vehicles operation, International Journal of Vehicle Design, 65 (2014), 360-383.  doi: 10.1504/IJVD.2014.063832.
    [55] A. LachapelleJ. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588.  doi: 10.1142/S0218202510004349.
    [56] A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Research part B: Methodological, 45 (2011), 1572-1589.  doi: 10.1016/j.trb.2011.07.011.
    [57] J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.
    [58] J. A. Laval and L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow, Transportation Research Part B: Methodological, 52 (2013), 17-30.  doi: 10.1016/j.trb.2013.02.008.
    [59] D. A. Lazar, R. Pedarsani, K. Chandrasekher and D. Sadigh, Maximizing road capacity using cars that influence people, in 2018 IEEE Conference on Decision and Control (CDC)
    [60] J.-P. Lebacque, First-order macroscopic traffic flow models: Intersection modeling, network modeling, Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic TheoryUniversity of Maryland, College Park, (2005).
    [61] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.
    [62] M. W. Levin and S. D. Boyles, A multiclass cell transmission model for shared human and autonomous vehicle roads, Transportation Research Part C: Emerging Technologies, 62 (2016), 103-116.  doi: 10.1016/j.trc.2015.10.005.
    [63] N. LiD. W. OylerM. ZhangY. YildizI. Kolmanovsky and A. R. Girard, Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems, IEEE Transactions on Control Systems Technology, 26 (2018), 1782-1797.  doi: 10.1109/TCST.2017.2723574.
    [64] X. P. LiA. GhiasiZ. G. Xu and X. B. Qu, A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis, Transportation Research Part B: Methodological, 118 (2018), 429-456.  doi: 10.1016/j.trb.2018.11.002.
    [65] Y. LiC. TangS. Peeta and Y. Wang, Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2209-2219.  doi: 10.1109/TITS.2018.2865546.
    [66] M. J. Lighthill, On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A, 211 (1952), 564-587.  doi: 10.1098/rspa.1952.0060.
    [67] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.
    [68] C. L. Liu and M. Tomizuka, Safe exploration: Addressing various uncertainty levels in human robot interactions, 2015 American Control Conference (ACC), IEEE, (2015), 465–470. doi: 10.1109/ACC.2015.7170779.
    [69] C. L. Liu and M. Tomizuka, Enabling safe freeway driving for automated vehicles, American Control Conference (ACC), IEEE, (2016), 3461–3467. doi: 10.1109/ACC.2016.7525449.
    [70] J. Q. MaX. P. LiS. E. ShladoverH. A. RakhaX.-Y. LuR. Jagannathan and D. J. Dailey, Freeway speed harmonization, IEEE Trans. Intelligent Vehicles, 1 (2016), 78-89.  doi: 10.1109/TIV.2016.2551540.
    [71] A. A. MalikopoulosS. HongB. B. ParkJ. Lee and S. Ryu, Optimal control for speed harmonization of automated vehicles, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 2405-2417.  doi: 10.1109/TITS.2018.2865561.
    [72] V. Milanés and S. E. Shladover, Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data, Transportation Research Part C: Emerging Technologies, 48 (2014), 285-300. 
    [73] V. MilanésS. E. ShladoverJ. SpringC. NowakowskiH. Kawazoe and M. Nakamura, Cooperative adaptive cruise control in real traffic situations, IEEE Transactions on Intelligent Transportation Systems, 15 (2014), 296-305. 
    [74] G. J. NausR. P. VugtsJ. PloegM. J. van de Molengraft and M. Steinbuch, String-stable CACC design and experimental validation: A frequency-domain approach, IEEE Transactions on Vehicular Technology, 59 (2010), 4268-4279.  doi: 10.1109/TVT.2010.2076320.
    [75] G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part Ⅰ: General theory, Transportation Research Part B: Methodological, 27 (1993), 281-287.  doi: 10.1016/0191-2615(93)90038-C.
    [76] G. F. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9 (1961), 209-229.  doi: 10.1287/opre.9.2.209.
    [77] D. NgoduyS. P. Hoogendoorn and R. Liu, Continuum modeling of cooperative traffic flow dynamics, Physica A: Statistical Mechanics and its Applications, 388 (2009), 2705-2716.  doi: 10.1016/j.physa.2009.02.040.
    [78] G. Orosz, R. E. Wilson and G. Stépán, Traffic jams: Dynamics and control, (2010).
    [79] H. J. Payne, Model of freeway traffic and control, Mathematical Model of Public System, 51–61.
    [80] J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw and H. Nijmeijer, Design and experimental evaluation of cooperative adaptive cruise control, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), (2011), 260–265. doi: 10.1109/ITSC.2011.6082981.
    [81] K. N. Porfyri, I. K. Nikolos, A. I. Delis and M. Papageorgiou, Stability analysis of a macroscopic traffic flow model for adaptive cruise control systems, ASME 2015 International Mechanical Engineering Congress and Exposition, (2015), V012T15A002. doi: 10.1115/IMECE2015-50977.
    [82] W. B. Qin and G. Orosz, Digital effects and delays in connected vehicles: Linear stability and simulations, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A001. doi: 10.1115/DSCC2013-3830.
    [83] W. B. Qin and G. Orosz, Scalable stability analysis on large connected vehicle systems subject to stochastic communication delays, Transportation Research Part C: Emerging Technologies, 83 (2017), 39-60.  doi: 10.1016/j.trc.2017.07.005.
    [84] R. Rajamani and S. E. Shladover, An experimental comparative study of autonomous and co-operative vehicle-follower control systems, Transportation Research Part C: Emerging Technologies, 9 (2001), 15-31.  doi: 10.1016/S0968-090X(00)00021-8.
    [85] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.
    [86] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970. doi: doi.
    [87] E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591.  doi: 10.3934/dcdss.2014.7.579.
    [88] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), 856-869.  doi: 10.1137/0907058.
    [89] D. Sadigh, S. Sastry, S. A. Seshia and A. D. Dragan, Planning for autonomous cars that leverage effects on human actions, Robotics: Science and Systems, (2016). doi: 10.15607/RSS.2016.XII.029.
    [90] W. J. Schakel, B. Van Arem and B. D. Netten, Effects of cooperative adaptive cruise control on traffic flow stability, Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, (2010), 759–764. doi: 10.1109/ITSC.2010.5625133.
    [91] B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745–772, arXiv: 1204.5510. doi: 10.3934/nhm.2013.8.745.
    [92] R. W. Shephard and R. Färe, The law of diminishing returns, Production Theory, Lecture Notes in Econom. and Math. Systems, Springer, Berlin, 99 (1974), 287–318.
    [93] F. Siebel and W. Mauser, On the fundamental diagram of traffic flow, SIAM Journal on Applied Mathematics, 66 (2006), 1150-1162.  doi: 10.1137/050627113.
    [94] R. E. SternS. CuiM. L. Delle MonacheR. BhadaniM. BuntingM. ChurchillN. HamiltonH. PohlmannF. WuB. PiccoliB. SeiboldJ. Sprinkle and D. B. Workai, Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments, Transportation Research Part C: Emerging Technologies, 89 (2018), 205-221.  doi: 10.1016/j.trc.2018.02.005.
    [95] S. H. Strogatz, Nonlinear Ddynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.
    [96] D. Swaroop and J. K. Hedrick, String stability of interconnected systems, IEEE transactions on automatic control, 41 (1996), 349-357.  doi: 10.1109/9.486636.
    [97] D. Swaroop and J. K. Hedrick, Direct adaptive longitudinal control of vehicle platoons, IEEE Transactions on Vehicular Technology, 50 (2001), 150-161.  doi: 10.1109/CDC.1994.410877.
    [98] D. SwaroopJ. K. HedrickC. Chien and P. Ioannou, A comparision of spacing and headway control laws for automatically controlled vehicles, Vehicle System Dynamics, 23 (1994), 597-625. 
    [99] A. Talebpour and H. S. Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput, Transportation Research Part C: Emerging Technologies, 71 (2016), 143-163.  doi: 10.1016/j.trc.2016.07.007.
    [100] A. TalebpourH. S. Mahmassani and S. H. Hamdar, Modeling lane-changing behavior in a connected environment: A game theory approach, Transportation Research Procedia, 7 (2015), 420-440. 
    [101] A. TalebpourH. S. MahmassaniS. H. Hamdar and et al., Effect of information availability on stability of traffic flow: Percolation theory approach, Transportation Research Part B: Methodological, 117 (2018), 624-638. 
    [102] M. Treiber, A. Hennecke and D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Physical Review E, 62 (2000), 1805. doi: 10.1103/PhysRevE.62.1805.
    [103] B. Van AremC. J. Van Driel and R. Visser, The impact of cooperative adaptive cruise control on traffic-flow characteristics, IEEE Transactions on Intelligent Transportation Systems, 7 (2006), 429-436. 
    [104] J. VanderWerf, S. Shladover, N. Kourjanskaia, M. Miller and H. Krishnan, Modeling effects of driver control assistance systems on traffic, Transportation Research Record: Journal of the Transportation Research Board, 167–174.
    [105] M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅰ: Mathematical formulation and non-cooperative systems, Transportation Research Part C: Emerging Technologies, 40 (2014), 271-289.  doi: 10.1016/j.trc.2013.11.023.
    [106] M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Rolling horizon control framework for driver assistance systems. Part Ⅱ: Cooperative sensing and cooperative control, Transportation Research Part C: emerging technologies, 40 (2014), 290-311.  doi: 10.1016/j.trc.2013.11.024.
    [107] M. WangW. DaamenS. P. Hoogendoorn and B. van Arem, Cooperative car-following control: Distributed algorithm and impact on moving jam features, IEEE Transactions on Intelligent Transportation Systems, 17 (2016), 1459-1471.  doi: 10.1109/TITS.2015.2505674.
    [108] M. WangS. P. HoogendoornW. DaamenB. van Arem and R. Happee, Game theoretic approach for predictive lane-changing and car-following control, Transportation Research Part C: Emerging Technologies, 58 (2015), 73-92.  doi: 10.1016/j.trc.2015.07.009.
    [109] Y. G. WeiC. AvcıJ. T. LiuB. BelezamoN. AydınP. F. Li and X. S. Zhou, Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models, Transportation Research Part B: Methodological, 106 (2017), 102-129.  doi: 10.1016/j.trb.2017.10.012.
    [110] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974.
    [111] C. Wu, A. M. Bayen and A. Mehta, Stabilizing traffic with autonomous vehicles, 2018 IEEE International Conference on Robotics and Automation (ICRA), (2018), 1–7. doi: 10.1109/ICRA.2018.8460567.
    [112] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky and A. M. Bayen, Flow: Architecture and benchmarking for reinforcement learning in traffic control, preprint, arXiv: 1710.05465.
    [113] C. Wu, A. Kreidieh, E. Vinitsky and A. M. Bayen, Emergent behaviors in mixed-autonomy traffic, Conference on Robot Learning, (2017), 398–407.
    [114] C. Wu, K. Parvate, N. Kheterpal, L. Dickstein, A. Mehta, E. Vinitsky and A. M. Bayen, Framework for control and deep reinforcement learning in traffic, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), (2017), 1–8. doi: 10.1109/ITSC.2017.8317694.
    [115] H.-H. Yang and H. Peng, Development of an errorable car-following driver model, Vehicle System Dynamics, 48 (2010), 751-773. 
    [116] H. D. YaoJ. X. CuiX. P. LiY. Wang and S. An, A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization, Transportation Research Part D: Transport and Environment, 62 (2018), 456-473.  doi: 10.1016/j.trd.2018.03.010.
    [117] J. H. Yoo and R. Langari, Stackelberg game based model of highway driving, ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, (2012), 499–508. doi: 10.1115/DSCC2012-MOVIC2012-8703.
    [118] J. H. Yoo and R. Langari, A Stackelberg game theoretic driver model for merging, ASME 2013 Dynamic Systems and Control Conference, (2013), V002T30A003. doi: 10.1115/DSCC2013-3882.
    [119] H. T. YuH. E. Tseng and R. Langari, A human-like game theory-based controller for automatic lane changing, Transportation Research Part C: Emerging Technologies, 88 (2018), 140-158.  doi: 10.1016/j.trc.2018.01.016.
    [120] H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Research Part B: Methodological, 32 (1998), 485-498.  doi: 10.1016/S0191-2615(98)00014-9.
    [121] H. M. Zhang, A mathematical theory of traffic hysteresis, Transportation Research Part B: Methodological, 33 (1999), 1-23.  doi: 10.1016/S0191-2615(98)00022-8.
    [122] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.
    [123] H. M. Zhang and T. Kim, A car-following theory for multiphase vehicular traffic flow, Transportation Research Part B: Methodological, 39 (2005), 385-399.  doi: 10.1016/j.trb.2004.06.005.
    [124] D. ZhaoX. N. HuangH. PengH. Lam and D. J. LeBlanc, Accelerated evaluation of automated vehicles in car-following maneuvers, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 733-744.  doi: 10.1109/TITS.2017.2701846.
    [125] D. ZhaoH. LamH. PengS. BaoD. J. LeBlancK. Nobukawa and C. S. Pan, Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques, IEEE Transactions on Intelligent Transportation Systems, 18 (2017), 595-607.  doi: 10.1109/TITS.2016.2582208.
    [126] Z. D. ZhengS. AhnD. J. Chen and J. Laval, Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations, Transportation Research Part B: Methodological, 45 (2011), 372-384.  doi: 10.1016/j.trb.2010.08.002.
    [127] Y. ZhouS. AhnM. Chitturi and D. A. Noyce, Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty, Transportation Research Part C: Emerging Technologies, 83 (2017), 61-76.  doi: 10.1016/j.trc.2017.07.011.
  • 加载中




Article Metrics

HTML views(516) PDF downloads(866) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint