# American Institute of Mathematical Sciences

February  2021, 26(2): 795-813. doi: 10.3934/dcdsb.2020142

## Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations

 1 College of of Sciences, Northeastern University, Shenyang 110819, P. R. China 2 School of Mathematics (Zhuhai), Sun Yat-Sen University, Zhuhai 519082, P. R. China

* Corresponding author: Xiaopeng Zhao

Received  January 2018 Revised  January 2020 Published  May 2020

Fund Project: This paper is supported by the National Nature Science Foundation of China (grant No. 11401258), Nature Science Foundation of Jiangsu Province (grant No. BK20140130) and China Postdoctoral Science Foundation (grant No. 2015M581689)

The global well-posedness and large time behavior of solutions for the Cauchy problem of the three-dimensional generalized Navier-Stokes equations are studied. We first construct a local continuous solution, then by combining some a priori estimates and the continuity argument, the local continuous solution is extended to all $t>0$ step by step provided that the initial data is sufficiently small. In addition, by using Strauss's inequality, generalized interpolation type lemma and a bootstrap argument, we establish the $L^p$ decay estimate for the solution $u(\cdot,t)$ and all its derivatives for generalized Navier-Stokes equations with $\max\{1,\frac{3+q}6\}<\alpha\leq\frac12+\min\{\frac3q-\frac3p,\frac3{2p}\}$.

Citation: Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142
##### References:
 [1] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar [2] D. Chae and J. Lee, On the global well-posedness and stability of the Navier-Stokes and the related equations,, [Contributions to Current Challenges in Mathematical Fluid Mechanics], in Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 31–51.  Google Scholar [3] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.  doi: 10.1137/S0036141098337333.  Google Scholar [4] X. Ding and J. Wang, Global solution for a semilinear parabolic system, Acta Math. Sci. (English Ed.), 3 (1983), 397-414.  doi: 10.1016/S0252-9602(18)30621-0.  Google Scholar [5] J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations, Kinet. Relat. Models, 6 (2013), 545-556.  doi: 10.3934/krm.2013.6.545.  Google Scholar [6] A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969.  Google Scholar [7] D. Hoff and J. A. Smooler, Global existence for systems of parabolic conservation laws in several space variables, J. Differential Equations, 68 (1987), 210-220.  doi: 10.1016/0022-0396(87)90192-6.  Google Scholar [8] D. Hoff and J. A. Smooler, Solutions in the large for certain nonlinear parabolic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 213-235.  doi: 10.1016/S0294-1449(16)30403-6.  Google Scholar [9] Z. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.  doi: 10.1016/j.na.2012.04.014.  Google Scholar [10] Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-$\alpha$ models, Math. Methods Appl. Sci., 37 (2014), 838-845.  doi: 10.1002/mma.2840.  Google Scholar [11] Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal., 94 (2015), 105-124.  doi: 10.3233/ASY-151307.  Google Scholar [12] T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar [13] I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205-222.  doi: 10.1512/iumj.2001.50.2084.  Google Scholar [14] I. Kukavica and J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293-303.  doi: 10.1088/0951-7715/19/2/003.  Google Scholar [15] N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyperdissipation, Geom. Funct. Anal., 12 (2002), 355-379.  doi: 10.1007/s00039-002-8250-z.  Google Scholar [16] H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. Zingano, Decay in time of incompressible flows, J. Math. Fluid Mech., 5 (2003), 231-244.  doi: 10.1007/s00021-003-0079-1.  Google Scholar [17] J. Leray, Étude de diverses équations integrales non lineaires et de quelques problémes que pose l'hydrodynamique, Thèses de l'entre-deux-guerres, 142 (1933), 88pp.  Google Scholar [18] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar [19] P. Li and Z. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces, J. Funct. Anal., 259 (2010), 2457-2519.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar [20] J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar [21] Q. Liu and J. Zhao, Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420 (2014), 1301-1315.  doi: 10.1016/j.jmaa.2014.06.031.  Google Scholar [22] Q. Liu, J. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, Ann. Mat. Pura Appl. (4), 191 (2012), 293-309.  doi: 10.1007/s10231-010-0184-8.  Google Scholar [23] S. Liu, F. Wang and H. Zhao, Global existence and asymptotics of solutions of the Cahn-Hilliard equation, J. Differential Equations, 238 (2007), 426-469.  doi: 10.1016/j.jde.2007.02.014.  Google Scholar [24] C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484.  doi: 10.1016/j.na.2006.11.011.  Google Scholar [25] M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.  doi: 10.1007/BF00752111.  Google Scholar [26] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733-763.  doi: 10.1080/03605308608820443.  Google Scholar [27] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, USA, 1970.   Google Scholar [28] W. A. Strauss, Decay and asymptotic for $u_tt-\Delta u=F(u)$, J. Funct. Anal., 2 (1968), 409-457.  doi: 10.1016/0022-1236(68)90004-9.  Google Scholar [29] S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system, Math. Method Appl. Sci., 39 (2016), 4398-4418.  doi: 10.1002/mma.3868.  Google Scholar [30] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbb{R}^n$, J. London Math. Soc., 35 (1987), 303-313.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar [31] J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar [32] J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.  doi: 10.1080/03605300701382530.  Google Scholar [33] Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl. (4), 195 (2016), 1111-1121.  doi: 10.1007/s10231-015-0507-x.  Google Scholar [34] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar [35] Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci., 30 (2007), 1223-1229.  doi: 10.1002/mma.841.  Google Scholar [36] Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071.  doi: 10.1088/0951-7715/21/9/008.  Google Scholar

show all references

##### References:
 [1] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.  doi: 10.1002/cpa.3160350604.  Google Scholar [2] D. Chae and J. Lee, On the global well-posedness and stability of the Navier-Stokes and the related equations,, [Contributions to Current Challenges in Mathematical Fluid Mechanics], in Adv. Math. Fluid Mech., Birkhäuser, Basel, (2004), 31–51.  Google Scholar [3] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.  doi: 10.1137/S0036141098337333.  Google Scholar [4] X. Ding and J. Wang, Global solution for a semilinear parabolic system, Acta Math. Sci. (English Ed.), 3 (1983), 397-414.  doi: 10.1016/S0252-9602(18)30621-0.  Google Scholar [5] J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations, Kinet. Relat. Models, 6 (2013), 545-556.  doi: 10.3934/krm.2013.6.545.  Google Scholar [6] A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, New York, 1969.  Google Scholar [7] D. Hoff and J. A. Smooler, Global existence for systems of parabolic conservation laws in several space variables, J. Differential Equations, 68 (1987), 210-220.  doi: 10.1016/0022-0396(87)90192-6.  Google Scholar [8] D. Hoff and J. A. Smooler, Solutions in the large for certain nonlinear parabolic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 213-235.  doi: 10.1016/S0294-1449(16)30403-6.  Google Scholar [9] Z. Jiang, Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term, Nonlinear Anal., 75 (2012), 5002-5009.  doi: 10.1016/j.na.2012.04.014.  Google Scholar [10] Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-$\alpha$ models, Math. Methods Appl. Sci., 37 (2014), 838-845.  doi: 10.1002/mma.2840.  Google Scholar [11] Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal., 94 (2015), 105-124.  doi: 10.3233/ASY-151307.  Google Scholar [12] T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar [13] I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205-222.  doi: 10.1512/iumj.2001.50.2084.  Google Scholar [14] I. Kukavica and J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293-303.  doi: 10.1088/0951-7715/19/2/003.  Google Scholar [15] N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyperdissipation, Geom. Funct. Anal., 12 (2002), 355-379.  doi: 10.1007/s00039-002-8250-z.  Google Scholar [16] H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. Zingano, Decay in time of incompressible flows, J. Math. Fluid Mech., 5 (2003), 231-244.  doi: 10.1007/s00021-003-0079-1.  Google Scholar [17] J. Leray, Étude de diverses équations integrales non lineaires et de quelques problémes que pose l'hydrodynamique, Thèses de l'entre-deux-guerres, 142 (1933), 88pp.  Google Scholar [18] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar [19] P. Li and Z. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces, J. Funct. Anal., 259 (2010), 2457-2519.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar [20] J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar [21] Q. Liu and J. Zhao, Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier-Herz spaces, J. Math. Anal. Appl., 420 (2014), 1301-1315.  doi: 10.1016/j.jmaa.2014.06.031.  Google Scholar [22] Q. Liu, J. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, Ann. Mat. Pura Appl. (4), 191 (2012), 293-309.  doi: 10.1007/s10231-010-0184-8.  Google Scholar [23] S. Liu, F. Wang and H. Zhao, Global existence and asymptotics of solutions of the Cahn-Hilliard equation, J. Differential Equations, 238 (2007), 426-469.  doi: 10.1016/j.jde.2007.02.014.  Google Scholar [24] C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461-484.  doi: 10.1016/j.na.2006.11.011.  Google Scholar [25] M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.  doi: 10.1007/BF00752111.  Google Scholar [26] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733-763.  doi: 10.1080/03605308608820443.  Google Scholar [27] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, USA, 1970.   Google Scholar [28] W. A. Strauss, Decay and asymptotic for $u_tt-\Delta u=F(u)$, J. Funct. Anal., 2 (1968), 409-457.  doi: 10.1016/0022-1236(68)90004-9.  Google Scholar [29] S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system, Math. Method Appl. Sci., 39 (2016), 4398-4418.  doi: 10.1002/mma.3868.  Google Scholar [30] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $\mathbb{R}^n$, J. London Math. Soc., 35 (1987), 303-313.  doi: 10.1112/jlms/s2-35.2.303.  Google Scholar [31] J. Wu, Generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar [32] J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.  doi: 10.1080/03605300701382530.  Google Scholar [33] Z. Ye, Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations, Ann. Mat. Pura Appl. (4), 195 (2016), 1111-1121.  doi: 10.1007/s10231-015-0507-x.  Google Scholar [34] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar [35] Y. Zhou, A remark on the decay of solutions to the 3-D Navier-Stokes equations, Math. Methods Appl. Sci., 30 (2007), 1223-1229.  doi: 10.1002/mma.841.  Google Scholar [36] Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071.  doi: 10.1088/0951-7715/21/9/008.  Google Scholar
 [1] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 [2] Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348 [3] Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 [4] Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 [5] Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110 [6] Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408 [7] Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005 [8] Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352 [9] Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320 [10] Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 [11] Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002 [12] Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002 [13] Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 [14] Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 [15] Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 [16] Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 [17] Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 [18] Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 [19] Duy Phan. Approximate controllability for Navier–Stokes equations in $\rm3D$ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 [20] Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

2019 Impact Factor: 1.27

Article outline