
-
Previous Article
Chaos control in a special pendulum system for ultra-subharmonic resonance
- DCDS-B Home
- This Issue
-
Next Article
Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations
Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows
1. | College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China |
We devote the present paper to a fully discrete finite element scheme for the 2D/3D nonstationary incompressible magnetohydrodynamic-Voigt regularization model. This scheme is based on a finite element approximation for space discretization and the Crank-Nicolson-type scheme for time discretization, which is a two-step method. Moreover, we study stability and convergence of the fully discrete finite element scheme and obtain unconditional stability and error estimates of velocity and magnetic fields, respectively. Finally, several numerical experiments are investigated to confirm our theoretical findings.
References:
[1] |
H. Alfvén,
Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 3763-3767.
|
[2] |
L. Barleon, V. Casal and L. Lenhart,
MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.
|
[3] |
J. D. Barrow, R. Maartens and C. G. Tsagas,
Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.
doi: 10.1016/j.physrep.2007.04.006. |
[4] |
R. Bermejo, P. Galán del Sastre and L. Saavedra,
A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109.
doi: 10.1137/11085548X. |
[5] |
P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor and Francis, New York, 2007. |
[6] |
M. A. Case, A. Labovsky, L. G. Rebholz and N. E. Wilson,
A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. ser. B, 1 (2010), 217-236.
|
[7] |
D. Catania,
Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara., 56 (2010), 1-20.
doi: 10.1007/s11565-009-0069-1. |
[8] |
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() ![]() |
[9] |
E. Dormy and A. M. Soward, Mathematical Aspects of Natural Dynamos, , Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences, vol. 13, Universite Joseph Fourier, Grenoble, 2007.
doi: 10.1201/9781420055269. |
[10] |
M. A. Ebrahimi, M. Holst and E. Lunasin,
The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.
doi: 10.1093/imamat/hxr069. |
[11] |
J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
doi: 10.1007/978-3-540-75712-2_1. |
[12] |
J. F. Gerbeau, C. L. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
![]() ![]() |
[13] |
M. Gunzburger, A. Meir and J. Peterson,
On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic, Math. Comput., 56 (1991), 523-563.
doi: 10.1090/S0025-5718-1991-1066834-0. |
[14] |
H. Hashizume,
Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.
doi: 10.1016/j.fusengdes.2005.08.086. |
[15] |
J. Heywood and R. Rannacher,
Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ: Error analysis for second order time discretizations, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
W. Hillebrandt and F. Kupka, Interdisciplinary Aspects of Turbulence, , Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-78961-1. |
[17] |
N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran,
A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281 (2015), 263-276.
doi: 10.1016/j.cam.2014.09.026. |
[18] |
V. K. Kalantarov, B. Levant and E. S. Titi,
Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.
doi: 10.1007/s00332-008-9029-7. |
[19] |
B. Khouider and E. Titi,
An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.
doi: 10.1002/cpa.20218. |
[20] |
P. Kuberry, A. Larios, L. Rebholz and N. Wilson,
Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.
doi: 10.1016/j.camwa.2012.07.010. |
[21] |
A. Labovsky, W. Layton, C. Manica, M. Neda and L. Rebholz,
The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 958-974.
doi: 10.1016/j.cma.2008.11.004. |
[22] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[23] |
A. Larios and E. S. Titi,
On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.
doi: 10.3934/dcdsb.2010.14.603. |
[24] |
A. Larios and E. S. Titi,
Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.
doi: 10.1007/s00021-013-0136-3. |
[25] |
W. Layton and C. Trenchea,
Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62 (2012), 112-120.
doi: 10.1016/j.apnum.2011.10.006. |
[26] |
B. Levant, F. Ramos and E. S. Titi,
On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.
doi: 10.4310/CMS.2010.v8.n1.a14. |
[27] |
T. Lin, J. Gilbert, R. Kossowsky and P. College, Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defens Technical Information Center, 1990. |
[28] |
X. L. Lu and P. Z. Huang,
Unconditional stability of fully discrete scheme for the Kelvin-Voigt model, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 137-142.
|
[29] |
X. L. Lu, L. Zhang and P. Z. Huang,
A fully discrete finite element scheme for the Kelvin-Voigt model, Filomat, 33 (2019), 5813-5827.
doi: 10.2298/FIL1918813L. |
[30] |
X. L. Lu and P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), Paper No. 3, 24 pp.
doi: 10.1007/s10915-019-01114-x. |
[31] |
R. Moreau, Magneto-hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990. |
[32] |
B. Punsly, Black Hole Gravitohydromagnetics, Astrophysics and Space Science Library, Springer-Verlag, Berlin, 2008. |
[33] |
F. Ramos and E. S. Titi,
Invariant measure for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.
doi: 10.3934/dcds.2010.28.375. |
[34] |
S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo,
MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.
doi: 10.1016/j.fusengdes.2010.02.038. |
[35] |
P. Wang, P. Huang and J. Wu,
Superconvergence of the stationary incompressible magnetohydrodynamics equations, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 281-292.
|
[36] |
L. Wang, J. Li and P. Z. Huang,
An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf., 98 (2018), 183-190.
doi: 10.1016/j.icheatmasstransfer.2018.02.019. |
[37] |
J. Yang, Y. N. He and G. Zhang,
On an efficient second order backward difference Newton scheme for MHD system, J. Math. Anal. Appl., 458 (2018), 676-714.
doi: 10.1016/j.jmaa.2017.09.024. |
[38] |
G. D. Zhang and Y. N. He,
Decoupled schemes for unsteady MHD equations Ⅱ: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406.
doi: 10.1016/j.camwa.2015.03.019. |
[39] |
G. D. Zhang, J. J. Yang and C. J. Bi,
Second order unconditionally convergent and energy stable linearized scheme for MHD equations, Adv. Comput. Math., 44 (2018), 505-540.
doi: 10.1007/s10444-017-9552-x. |
show all references
References:
[1] |
H. Alfvén,
Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 3763-3767.
|
[2] |
L. Barleon, V. Casal and L. Lenhart,
MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.
|
[3] |
J. D. Barrow, R. Maartens and C. G. Tsagas,
Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.
doi: 10.1016/j.physrep.2007.04.006. |
[4] |
R. Bermejo, P. Galán del Sastre and L. Saavedra,
A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109.
doi: 10.1137/11085548X. |
[5] |
P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor and Francis, New York, 2007. |
[6] |
M. A. Case, A. Labovsky, L. G. Rebholz and N. E. Wilson,
A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. ser. B, 1 (2010), 217-236.
|
[7] |
D. Catania,
Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara., 56 (2010), 1-20.
doi: 10.1007/s11565-009-0069-1. |
[8] |
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() ![]() |
[9] |
E. Dormy and A. M. Soward, Mathematical Aspects of Natural Dynamos, , Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences, vol. 13, Universite Joseph Fourier, Grenoble, 2007.
doi: 10.1201/9781420055269. |
[10] |
M. A. Ebrahimi, M. Holst and E. Lunasin,
The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.
doi: 10.1093/imamat/hxr069. |
[11] |
J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
doi: 10.1007/978-3-540-75712-2_1. |
[12] |
J. F. Gerbeau, C. L. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
![]() ![]() |
[13] |
M. Gunzburger, A. Meir and J. Peterson,
On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic, Math. Comput., 56 (1991), 523-563.
doi: 10.1090/S0025-5718-1991-1066834-0. |
[14] |
H. Hashizume,
Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.
doi: 10.1016/j.fusengdes.2005.08.086. |
[15] |
J. Heywood and R. Rannacher,
Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ: Error analysis for second order time discretizations, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
W. Hillebrandt and F. Kupka, Interdisciplinary Aspects of Turbulence, , Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-78961-1. |
[17] |
N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran,
A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281 (2015), 263-276.
doi: 10.1016/j.cam.2014.09.026. |
[18] |
V. K. Kalantarov, B. Levant and E. S. Titi,
Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.
doi: 10.1007/s00332-008-9029-7. |
[19] |
B. Khouider and E. Titi,
An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.
doi: 10.1002/cpa.20218. |
[20] |
P. Kuberry, A. Larios, L. Rebholz and N. Wilson,
Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.
doi: 10.1016/j.camwa.2012.07.010. |
[21] |
A. Labovsky, W. Layton, C. Manica, M. Neda and L. Rebholz,
The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 958-974.
doi: 10.1016/j.cma.2008.11.004. |
[22] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[23] |
A. Larios and E. S. Titi,
On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.
doi: 10.3934/dcdsb.2010.14.603. |
[24] |
A. Larios and E. S. Titi,
Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.
doi: 10.1007/s00021-013-0136-3. |
[25] |
W. Layton and C. Trenchea,
Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62 (2012), 112-120.
doi: 10.1016/j.apnum.2011.10.006. |
[26] |
B. Levant, F. Ramos and E. S. Titi,
On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.
doi: 10.4310/CMS.2010.v8.n1.a14. |
[27] |
T. Lin, J. Gilbert, R. Kossowsky and P. College, Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defens Technical Information Center, 1990. |
[28] |
X. L. Lu and P. Z. Huang,
Unconditional stability of fully discrete scheme for the Kelvin-Voigt model, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 137-142.
|
[29] |
X. L. Lu, L. Zhang and P. Z. Huang,
A fully discrete finite element scheme for the Kelvin-Voigt model, Filomat, 33 (2019), 5813-5827.
doi: 10.2298/FIL1918813L. |
[30] |
X. L. Lu and P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), Paper No. 3, 24 pp.
doi: 10.1007/s10915-019-01114-x. |
[31] |
R. Moreau, Magneto-hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990. |
[32] |
B. Punsly, Black Hole Gravitohydromagnetics, Astrophysics and Space Science Library, Springer-Verlag, Berlin, 2008. |
[33] |
F. Ramos and E. S. Titi,
Invariant measure for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.
doi: 10.3934/dcds.2010.28.375. |
[34] |
S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo,
MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.
doi: 10.1016/j.fusengdes.2010.02.038. |
[35] |
P. Wang, P. Huang and J. Wu,
Superconvergence of the stationary incompressible magnetohydrodynamics equations, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 281-292.
|
[36] |
L. Wang, J. Li and P. Z. Huang,
An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf., 98 (2018), 183-190.
doi: 10.1016/j.icheatmasstransfer.2018.02.019. |
[37] |
J. Yang, Y. N. He and G. Zhang,
On an efficient second order backward difference Newton scheme for MHD system, J. Math. Anal. Appl., 458 (2018), 676-714.
doi: 10.1016/j.jmaa.2017.09.024. |
[38] |
G. D. Zhang and Y. N. He,
Decoupled schemes for unsteady MHD equations Ⅱ: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406.
doi: 10.1016/j.camwa.2015.03.019. |
[39] |
G. D. Zhang, J. J. Yang and C. J. Bi,
Second order unconditionally convergent and energy stable linearized scheme for MHD equations, Adv. Comput. Math., 44 (2018), 505-540.
doi: 10.1007/s10444-017-9552-x. |
0.34080 | 0.34067 | 0.34014 | 0.32677 | |
0.35282 | 0.35269 | 0.35215 | 0.33852 | |
0.35376 | 0.35363 | 0.35308 | 0.33944 |
0.34080 | 0.34067 | 0.34014 | 0.32677 | |
0.35282 | 0.35269 | 0.35215 | 0.33852 | |
0.35376 | 0.35363 | 0.35308 | 0.33944 |
2.49610 | 2.49517 | 2.49125 | 2.39290 | |
2.56163 | 2.56067 | 2.55668 | 2.45729 | |
2.56670 | 2.56574 | 2.56174 | 2.46228 |
2.49610 | 2.49517 | 2.49125 | 2.39290 | |
2.56163 | 2.56067 | 2.55668 | 2.45729 | |
2.56670 | 2.56574 | 2.56174 | 2.46228 |
0.25873 | 0.25863 | 0.25824 | 0.25554 | |
0.26001 | 0.25991 | 0.25951 | 0.25682 | |
0.26001 | 0.25999 | 0.25960 | 0.25690 |
0.25873 | 0.25863 | 0.25824 | 0.25554 | |
0.26001 | 0.25991 | 0.25951 | 0.25682 | |
0.26001 | 0.25999 | 0.25960 | 0.25690 |
1.15137 | 1.15093 | 1.14917 | 1.13716 | |
1.15530 | 1.15486 | 1.15310 | 1.14113 | |
1.15556 | 1.15512 | 1.15336 | 1.14140 |
1.15137 | 1.15093 | 1.14917 | 1.13716 | |
1.15530 | 1.15486 | 1.15310 | 1.14113 | |
1.15556 | 1.15512 | 1.15336 | 1.14140 |
0.04996 | 0.04994 | 0.04998 | 0.05332 | |
0.09893 | 0.09890 | 0.09840 | 0.07804 |
0.04996 | 0.04994 | 0.04998 | 0.05332 | |
0.09893 | 0.09890 | 0.09840 | 0.07804 |
0.59884 | 0.59861 | 0.60165 | 0.71084 | |
0.97397 | 0.97361 | 0.96881 | 0.78582 |
0.59884 | 0.59861 | 0.60165 | 0.71084 | |
0.97397 | 0.97361 | 0.96881 | 0.78582 |
0.21840 | 0.21832 | 0.21787 | 0.17749 | |
0.26288 | 0.26278 | 0.26223 | 0.21420 |
0.21840 | 0.21832 | 0.21787 | 0.17749 | |
0.26288 | 0.26278 | 0.26223 | 0.21420 |
1.59528 | 1.59468 | 1.59254 | 1.41689 | |
1.84022 | 1.83953 | 1.83450 | 1.54426 |
1.59528 | 1.59468 | 1.59254 | 1.41689 | |
1.84022 | 1.83953 | 1.83450 | 1.54426 |
Rate | Rate | Rate | ||||
1/10 | 0.062879 | - | 0.009524 | - | 0.005226 | - |
1/20 | 0.015703 | 2.001 | 0.002346 | 2.021 | 0.001348 | 1.955 |
1/40 | 0.003903 | 2.008 | 0.000581 | 2.014 | 0.000303 | 2.153 |
Rate | Rate | Rate | ||||
1/10 | 0.062879 | - | 0.009524 | - | 0.005226 | - |
1/20 | 0.015703 | 2.001 | 0.002346 | 2.021 | 0.001348 | 1.955 |
1/40 | 0.003903 | 2.008 | 0.000581 | 2.014 | 0.000303 | 2.153 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.001 | 2.008 | 2.008 | 2.001 | 2.008 |
1/40 | 2.008 | 2.010 | 2.011 | 2.008 | 2.011 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.001 | 2.008 | 2.008 | 2.001 | 2.008 |
1/40 | 2.008 | 2.010 | 2.011 | 2.008 | 2.011 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.021 | 2.027 | 2.026 | 2.026 | 2.021 |
1/40 | 2.014 | 2.016 | 2.016 | 2.016 | 2.013 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.021 | 2.027 | 2.026 | 2.026 | 2.021 |
1/40 | 2.014 | 2.016 | 2.016 | 2.016 | 2.013 |
Rate | Rate | Rate | ||||
1/2 | 0.690006 | - | 0.325897 | - | 0.256334 | - |
1/4 | 0.273947 | 1.333 | 0.135307 | 1.268 | 0.077825 | 1.720 |
1/6 | 0.163001 | 1.280 | 0.086166 | 1.113 | 0.040745 | 1.596 |
1/8 | 0.117710 | 1.132 | 0.066413 | 0.905 | 0.026852 | 1.449 |
Rate | Rate | Rate | ||||
1/2 | 0.690006 | - | 0.325897 | - | 0.256334 | - |
1/4 | 0.273947 | 1.333 | 0.135307 | 1.268 | 0.077825 | 1.720 |
1/6 | 0.163001 | 1.280 | 0.086166 | 1.113 | 0.040745 | 1.596 |
1/8 | 0.117710 | 1.132 | 0.066413 | 0.905 | 0.026852 | 1.449 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.333 | 1.058 | 1.049 | 1.333 | 1.049 |
1/6 | 1.280 | 1.038 | 1.016 | 1.280 | 1.016 |
1/8 | 1.132 | 1.013 | 0.974 | 1.132 | 0.974 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.333 | 1.058 | 1.049 | 1.333 | 1.049 |
1/6 | 1.280 | 1.038 | 1.016 | 1.280 | 1.016 |
1/8 | 1.132 | 1.013 | 0.974 | 1.132 | 0.974 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.268 | 1.055 | 1.048 | 1.048 | 1.268 |
1/6 | 1.113 | 0.960 | 0.948 | 0.948 | 1.113 |
1/8 | 0.905 | 0.889 | 0.864 | 0.864 | 0.905 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.268 | 1.055 | 1.048 | 1.048 | 1.268 |
1/6 | 1.113 | 0.960 | 0.948 | 0.948 | 1.113 |
1/8 | 0.905 | 0.889 | 0.864 | 0.864 | 0.905 |
Methods | |||
Algorithm 3.1 | 1/4 | 8.20E-02 | 3.47E-02 |
Zhang's algorithm [39] | 1/4 | 9.49E-02 | 7.22E-02 |
Linearized Crank-Nicolson [39] | 1/4 | 9.50E-02 | 7.22E-02 |
[5pt] Algorithm 3.1 | 1/8 | 2.44E-02 | 1.27E-02 |
Zhang's algorithm [39] | 1/8 | 3.58E-02 | 3.24E-02 |
Linearized Crank-Nicolson [39] | 1/8 | 3.58E-02 | 3.24E-02 |
[5pt] Algorithm 3.1 | 1/16 | 1.09E-02 | 9.38E-03 |
Zhang's algorithm [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Linearized Crank-Nicolson [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Methods | |||
Algorithm 3.1 | 1/4 | 8.20E-02 | 3.47E-02 |
Zhang's algorithm [39] | 1/4 | 9.49E-02 | 7.22E-02 |
Linearized Crank-Nicolson [39] | 1/4 | 9.50E-02 | 7.22E-02 |
[5pt] Algorithm 3.1 | 1/8 | 2.44E-02 | 1.27E-02 |
Zhang's algorithm [39] | 1/8 | 3.58E-02 | 3.24E-02 |
Linearized Crank-Nicolson [39] | 1/8 | 3.58E-02 | 3.24E-02 |
[5pt] Algorithm 3.1 | 1/16 | 1.09E-02 | 9.38E-03 |
Zhang's algorithm [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Linearized Crank-Nicolson [39] | 1/16 | 1.15E-02 | 1.08E-02 |
[1] |
Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153 |
[2] |
Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 |
[3] |
Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 |
[4] |
Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051 |
[5] |
Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022074 |
[6] |
Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024 |
[7] |
Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637 |
[8] |
Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 |
[9] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[10] |
Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173 |
[11] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[12] |
Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014 |
[13] |
Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1 |
[14] |
Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207 |
[15] |
François Alouges. A new finite element scheme for Landau-Lifchitz equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 187-196. doi: 10.3934/dcdss.2008.1.187 |
[16] |
Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163 |
[17] |
Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153 |
[18] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[19] |
Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202 |
[20] |
Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]