
-
Previous Article
Chaos control in a special pendulum system for ultra-subharmonic resonance
- DCDS-B Home
- This Issue
-
Next Article
Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations
Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows
1. | College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China |
2. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China |
We devote the present paper to a fully discrete finite element scheme for the 2D/3D nonstationary incompressible magnetohydrodynamic-Voigt regularization model. This scheme is based on a finite element approximation for space discretization and the Crank-Nicolson-type scheme for time discretization, which is a two-step method. Moreover, we study stability and convergence of the fully discrete finite element scheme and obtain unconditional stability and error estimates of velocity and magnetic fields, respectively. Finally, several numerical experiments are investigated to confirm our theoretical findings.
References:
[1] |
H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 3763-3767. Google Scholar |
[2] |
L. Barleon, V. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412. Google Scholar |
[3] |
J. D. Barrow, R. Maartens and C. G. Tsagas,
Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.
doi: 10.1016/j.physrep.2007.04.006. |
[4] |
R. Bermejo, P. Galán del Sastre and L. Saavedra,
A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109.
doi: 10.1137/11085548X. |
[5] |
P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor and Francis, New York, 2007. |
[6] |
M. A. Case, A. Labovsky, L. G. Rebholz and N. E. Wilson,
A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. ser. B, 1 (2010), 217-236.
|
[7] |
D. Catania,
Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara., 56 (2010), 1-20.
doi: 10.1007/s11565-009-0069-1. |
[8] |
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() |
[9] |
E. Dormy and A. M. Soward, Mathematical Aspects of Natural Dynamos, , Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences, vol. 13, Universite Joseph Fourier, Grenoble, 2007.
doi: 10.1201/9781420055269. |
[10] |
M. A. Ebrahimi, M. Holst and E. Lunasin,
The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.
doi: 10.1093/imamat/hxr069. |
[11] |
J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
doi: 10.1007/978-3-540-75712-2_1. |
[12] |
J. F. Gerbeau, C. L. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
![]() |
[13] |
M. Gunzburger, A. Meir and J. Peterson,
On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic, Math. Comput., 56 (1991), 523-563.
doi: 10.1090/S0025-5718-1991-1066834-0. |
[14] |
H. Hashizume,
Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.
doi: 10.1016/j.fusengdes.2005.08.086. |
[15] |
J. Heywood and R. Rannacher,
Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ: Error analysis for second order time discretizations, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
W. Hillebrandt and F. Kupka, Interdisciplinary Aspects of Turbulence, , Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-78961-1. |
[17] |
N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran,
A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281 (2015), 263-276.
doi: 10.1016/j.cam.2014.09.026. |
[18] |
V. K. Kalantarov, B. Levant and E. S. Titi,
Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.
doi: 10.1007/s00332-008-9029-7. |
[19] |
B. Khouider and E. Titi,
An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.
doi: 10.1002/cpa.20218. |
[20] |
P. Kuberry, A. Larios, L. Rebholz and N. Wilson,
Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.
doi: 10.1016/j.camwa.2012.07.010. |
[21] |
A. Labovsky, W. Layton, C. Manica, M. Neda and L. Rebholz,
The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 958-974.
doi: 10.1016/j.cma.2008.11.004. |
[22] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[23] |
A. Larios and E. S. Titi,
On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.
doi: 10.3934/dcdsb.2010.14.603. |
[24] |
A. Larios and E. S. Titi,
Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.
doi: 10.1007/s00021-013-0136-3. |
[25] |
W. Layton and C. Trenchea,
Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62 (2012), 112-120.
doi: 10.1016/j.apnum.2011.10.006. |
[26] |
B. Levant, F. Ramos and E. S. Titi,
On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.
doi: 10.4310/CMS.2010.v8.n1.a14. |
[27] |
T. Lin, J. Gilbert, R. Kossowsky and P. College, Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defens Technical Information Center, 1990. Google Scholar |
[28] |
X. L. Lu and P. Z. Huang,
Unconditional stability of fully discrete scheme for the Kelvin-Voigt model, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 137-142.
|
[29] |
X. L. Lu, L. Zhang and P. Z. Huang,
A fully discrete finite element scheme for the Kelvin-Voigt model, Filomat, 33 (2019), 5813-5827.
doi: 10.2298/FIL1918813L. |
[30] |
X. L. Lu and P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), Paper No. 3, 24 pp.
doi: 10.1007/s10915-019-01114-x. |
[31] |
R. Moreau, Magneto-hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990. Google Scholar |
[32] |
B. Punsly, Black Hole Gravitohydromagnetics, Astrophysics and Space Science Library, Springer-Verlag, Berlin, 2008. |
[33] |
F. Ramos and E. S. Titi,
Invariant measure for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.
doi: 10.3934/dcds.2010.28.375. |
[34] |
S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo,
MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.
doi: 10.1016/j.fusengdes.2010.02.038. |
[35] |
P. Wang, P. Huang and J. Wu,
Superconvergence of the stationary incompressible magnetohydrodynamics equations, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 281-292.
|
[36] |
L. Wang, J. Li and P. Z. Huang,
An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf., 98 (2018), 183-190.
doi: 10.1016/j.icheatmasstransfer.2018.02.019. |
[37] |
J. Yang, Y. N. He and G. Zhang,
On an efficient second order backward difference Newton scheme for MHD system, J. Math. Anal. Appl., 458 (2018), 676-714.
doi: 10.1016/j.jmaa.2017.09.024. |
[38] |
G. D. Zhang and Y. N. He,
Decoupled schemes for unsteady MHD equations Ⅱ: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406.
doi: 10.1016/j.camwa.2015.03.019. |
[39] |
G. D. Zhang, J. J. Yang and C. J. Bi,
Second order unconditionally convergent and energy stable linearized scheme for MHD equations, Adv. Comput. Math., 44 (2018), 505-540.
doi: 10.1007/s10444-017-9552-x. |
show all references
References:
[1] |
H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 3763-3767. Google Scholar |
[2] |
L. Barleon, V. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412. Google Scholar |
[3] |
J. D. Barrow, R. Maartens and C. G. Tsagas,
Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.
doi: 10.1016/j.physrep.2007.04.006. |
[4] |
R. Bermejo, P. Galán del Sastre and L. Saavedra,
A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109.
doi: 10.1137/11085548X. |
[5] |
P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor and Francis, New York, 2007. |
[6] |
M. A. Case, A. Labovsky, L. G. Rebholz and N. E. Wilson,
A high physical accuracy method for incompressible magnetohydrodynamics, Int. J. Numer. Anal. Model. ser. B, 1 (2010), 217-236.
|
[7] |
D. Catania,
Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara., 56 (2010), 1-20.
doi: 10.1007/s11565-009-0069-1. |
[8] |
P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() |
[9] |
E. Dormy and A. M. Soward, Mathematical Aspects of Natural Dynamos, , Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences, vol. 13, Universite Joseph Fourier, Grenoble, 2007.
doi: 10.1201/9781420055269. |
[10] |
M. A. Ebrahimi, M. Holst and E. Lunasin,
The Navier-Stokes-Voight model for image inpainting, IMA J. Appl. Math., 78 (2013), 869-894.
doi: 10.1093/imamat/hxr069. |
[11] |
J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
doi: 10.1007/978-3-540-75712-2_1. |
[12] |
J. F. Gerbeau, C. L. Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
![]() |
[13] |
M. Gunzburger, A. Meir and J. Peterson,
On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic, Math. Comput., 56 (1991), 523-563.
doi: 10.1090/S0025-5718-1991-1066834-0. |
[14] |
H. Hashizume,
Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.
doi: 10.1016/j.fusengdes.2005.08.086. |
[15] |
J. Heywood and R. Rannacher,
Finite element approximation of the nonstationary Navier-Stokes equations, Ⅳ: Error analysis for second order time discretizations, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
W. Hillebrandt and F. Kupka, Interdisciplinary Aspects of Turbulence, , Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-78961-1. |
[17] |
N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran,
A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, J. Comput. Appl. Math., 281 (2015), 263-276.
doi: 10.1016/j.cam.2014.09.026. |
[18] |
V. K. Kalantarov, B. Levant and E. S. Titi,
Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.
doi: 10.1007/s00332-008-9029-7. |
[19] |
B. Khouider and E. Titi,
An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61 (2008), 1331-1346.
doi: 10.1002/cpa.20218. |
[20] |
P. Kuberry, A. Larios, L. Rebholz and N. Wilson,
Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64 (2012), 2647-2662.
doi: 10.1016/j.camwa.2012.07.010. |
[21] |
A. Labovsky, W. Layton, C. Manica, M. Neda and L. Rebholz,
The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), 958-974.
doi: 10.1016/j.cma.2008.11.004. |
[22] |
A. Larios, E. Lunasin and E. S. Titi,
Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636-2654.
doi: 10.1016/j.jde.2013.07.011. |
[23] |
A. Larios and E. S. Titi,
On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 603-627.
doi: 10.3934/dcdsb.2010.14.603. |
[24] |
A. Larios and E. S. Titi,
Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations, J. Math. Fluid Mech., 16 (2014), 59-76.
doi: 10.1007/s00021-013-0136-3. |
[25] |
W. Layton and C. Trenchea,
Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62 (2012), 112-120.
doi: 10.1016/j.apnum.2011.10.006. |
[26] |
B. Levant, F. Ramos and E. S. Titi,
On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8 (2010), 277-293.
doi: 10.4310/CMS.2010.v8.n1.a14. |
[27] |
T. Lin, J. Gilbert, R. Kossowsky and P. College, Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defens Technical Information Center, 1990. Google Scholar |
[28] |
X. L. Lu and P. Z. Huang,
Unconditional stability of fully discrete scheme for the Kelvin-Voigt model, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81 (2019), 137-142.
|
[29] |
X. L. Lu, L. Zhang and P. Z. Huang,
A fully discrete finite element scheme for the Kelvin-Voigt model, Filomat, 33 (2019), 5813-5827.
doi: 10.2298/FIL1918813L. |
[30] |
X. L. Lu and P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), Paper No. 3, 24 pp.
doi: 10.1007/s10915-019-01114-x. |
[31] |
R. Moreau, Magneto-hydrodynamics, Kluwer Academic Publishers, Dordrecht, 1990. Google Scholar |
[32] |
B. Punsly, Black Hole Gravitohydromagnetics, Astrophysics and Space Science Library, Springer-Verlag, Berlin, 2008. |
[33] |
F. Ramos and E. S. Titi,
Invariant measure for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.
doi: 10.3934/dcds.2010.28.375. |
[34] |
S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo,
MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.
doi: 10.1016/j.fusengdes.2010.02.038. |
[35] |
P. Wang, P. Huang and J. Wu,
Superconvergence of the stationary incompressible magnetohydrodynamics equations, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 281-292.
|
[36] |
L. Wang, J. Li and P. Z. Huang,
An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf., 98 (2018), 183-190.
doi: 10.1016/j.icheatmasstransfer.2018.02.019. |
[37] |
J. Yang, Y. N. He and G. Zhang,
On an efficient second order backward difference Newton scheme for MHD system, J. Math. Anal. Appl., 458 (2018), 676-714.
doi: 10.1016/j.jmaa.2017.09.024. |
[38] |
G. D. Zhang and Y. N. He,
Decoupled schemes for unsteady MHD equations Ⅱ: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406.
doi: 10.1016/j.camwa.2015.03.019. |
[39] |
G. D. Zhang, J. J. Yang and C. J. Bi,
Second order unconditionally convergent and energy stable linearized scheme for MHD equations, Adv. Comput. Math., 44 (2018), 505-540.
doi: 10.1007/s10444-017-9552-x. |
0.34080 | 0.34067 | 0.34014 | 0.32677 | |
0.35282 | 0.35269 | 0.35215 | 0.33852 | |
0.35376 | 0.35363 | 0.35308 | 0.33944 |
0.34080 | 0.34067 | 0.34014 | 0.32677 | |
0.35282 | 0.35269 | 0.35215 | 0.33852 | |
0.35376 | 0.35363 | 0.35308 | 0.33944 |
2.49610 | 2.49517 | 2.49125 | 2.39290 | |
2.56163 | 2.56067 | 2.55668 | 2.45729 | |
2.56670 | 2.56574 | 2.56174 | 2.46228 |
2.49610 | 2.49517 | 2.49125 | 2.39290 | |
2.56163 | 2.56067 | 2.55668 | 2.45729 | |
2.56670 | 2.56574 | 2.56174 | 2.46228 |
0.25873 | 0.25863 | 0.25824 | 0.25554 | |
0.26001 | 0.25991 | 0.25951 | 0.25682 | |
0.26001 | 0.25999 | 0.25960 | 0.25690 |
0.25873 | 0.25863 | 0.25824 | 0.25554 | |
0.26001 | 0.25991 | 0.25951 | 0.25682 | |
0.26001 | 0.25999 | 0.25960 | 0.25690 |
1.15137 | 1.15093 | 1.14917 | 1.13716 | |
1.15530 | 1.15486 | 1.15310 | 1.14113 | |
1.15556 | 1.15512 | 1.15336 | 1.14140 |
1.15137 | 1.15093 | 1.14917 | 1.13716 | |
1.15530 | 1.15486 | 1.15310 | 1.14113 | |
1.15556 | 1.15512 | 1.15336 | 1.14140 |
0.04996 | 0.04994 | 0.04998 | 0.05332 | |
0.09893 | 0.09890 | 0.09840 | 0.07804 |
0.04996 | 0.04994 | 0.04998 | 0.05332 | |
0.09893 | 0.09890 | 0.09840 | 0.07804 |
0.59884 | 0.59861 | 0.60165 | 0.71084 | |
0.97397 | 0.97361 | 0.96881 | 0.78582 |
0.59884 | 0.59861 | 0.60165 | 0.71084 | |
0.97397 | 0.97361 | 0.96881 | 0.78582 |
0.21840 | 0.21832 | 0.21787 | 0.17749 | |
0.26288 | 0.26278 | 0.26223 | 0.21420 |
0.21840 | 0.21832 | 0.21787 | 0.17749 | |
0.26288 | 0.26278 | 0.26223 | 0.21420 |
1.59528 | 1.59468 | 1.59254 | 1.41689 | |
1.84022 | 1.83953 | 1.83450 | 1.54426 |
1.59528 | 1.59468 | 1.59254 | 1.41689 | |
1.84022 | 1.83953 | 1.83450 | 1.54426 |
Rate | Rate | Rate | ||||
1/10 | 0.062879 | - | 0.009524 | - | 0.005226 | - |
1/20 | 0.015703 | 2.001 | 0.002346 | 2.021 | 0.001348 | 1.955 |
1/40 | 0.003903 | 2.008 | 0.000581 | 2.014 | 0.000303 | 2.153 |
Rate | Rate | Rate | ||||
1/10 | 0.062879 | - | 0.009524 | - | 0.005226 | - |
1/20 | 0.015703 | 2.001 | 0.002346 | 2.021 | 0.001348 | 1.955 |
1/40 | 0.003903 | 2.008 | 0.000581 | 2.014 | 0.000303 | 2.153 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.001 | 2.008 | 2.008 | 2.001 | 2.008 |
1/40 | 2.008 | 2.010 | 2.011 | 2.008 | 2.011 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.001 | 2.008 | 2.008 | 2.001 | 2.008 |
1/40 | 2.008 | 2.010 | 2.011 | 2.008 | 2.011 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.021 | 2.027 | 2.026 | 2.026 | 2.021 |
1/40 | 2.014 | 2.016 | 2.016 | 2.016 | 2.013 |
Rate | Rate | Rate | Rate | Rate | |
1/10 | - | - | - | - | - |
1/20 | 2.021 | 2.027 | 2.026 | 2.026 | 2.021 |
1/40 | 2.014 | 2.016 | 2.016 | 2.016 | 2.013 |
Rate | Rate | Rate | ||||
1/2 | 0.690006 | - | 0.325897 | - | 0.256334 | - |
1/4 | 0.273947 | 1.333 | 0.135307 | 1.268 | 0.077825 | 1.720 |
1/6 | 0.163001 | 1.280 | 0.086166 | 1.113 | 0.040745 | 1.596 |
1/8 | 0.117710 | 1.132 | 0.066413 | 0.905 | 0.026852 | 1.449 |
Rate | Rate | Rate | ||||
1/2 | 0.690006 | - | 0.325897 | - | 0.256334 | - |
1/4 | 0.273947 | 1.333 | 0.135307 | 1.268 | 0.077825 | 1.720 |
1/6 | 0.163001 | 1.280 | 0.086166 | 1.113 | 0.040745 | 1.596 |
1/8 | 0.117710 | 1.132 | 0.066413 | 0.905 | 0.026852 | 1.449 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.333 | 1.058 | 1.049 | 1.333 | 1.049 |
1/6 | 1.280 | 1.038 | 1.016 | 1.280 | 1.016 |
1/8 | 1.132 | 1.013 | 0.974 | 1.132 | 0.974 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.333 | 1.058 | 1.049 | 1.333 | 1.049 |
1/6 | 1.280 | 1.038 | 1.016 | 1.280 | 1.016 |
1/8 | 1.132 | 1.013 | 0.974 | 1.132 | 0.974 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.268 | 1.055 | 1.048 | 1.048 | 1.268 |
1/6 | 1.113 | 0.960 | 0.948 | 0.948 | 1.113 |
1/8 | 0.905 | 0.889 | 0.864 | 0.864 | 0.905 |
Rate | Rate | Rate | Rate | Rate | |
1/2 | - | - | - | - | - |
1/4 | 1.268 | 1.055 | 1.048 | 1.048 | 1.268 |
1/6 | 1.113 | 0.960 | 0.948 | 0.948 | 1.113 |
1/8 | 0.905 | 0.889 | 0.864 | 0.864 | 0.905 |
Methods | |||
Algorithm 3.1 | 1/4 | 8.20E-02 | 3.47E-02 |
Zhang's algorithm [39] | 1/4 | 9.49E-02 | 7.22E-02 |
Linearized Crank-Nicolson [39] | 1/4 | 9.50E-02 | 7.22E-02 |
[5pt] Algorithm 3.1 | 1/8 | 2.44E-02 | 1.27E-02 |
Zhang's algorithm [39] | 1/8 | 3.58E-02 | 3.24E-02 |
Linearized Crank-Nicolson [39] | 1/8 | 3.58E-02 | 3.24E-02 |
[5pt] Algorithm 3.1 | 1/16 | 1.09E-02 | 9.38E-03 |
Zhang's algorithm [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Linearized Crank-Nicolson [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Methods | |||
Algorithm 3.1 | 1/4 | 8.20E-02 | 3.47E-02 |
Zhang's algorithm [39] | 1/4 | 9.49E-02 | 7.22E-02 |
Linearized Crank-Nicolson [39] | 1/4 | 9.50E-02 | 7.22E-02 |
[5pt] Algorithm 3.1 | 1/8 | 2.44E-02 | 1.27E-02 |
Zhang's algorithm [39] | 1/8 | 3.58E-02 | 3.24E-02 |
Linearized Crank-Nicolson [39] | 1/8 | 3.58E-02 | 3.24E-02 |
[5pt] Algorithm 3.1 | 1/16 | 1.09E-02 | 9.38E-03 |
Zhang's algorithm [39] | 1/16 | 1.15E-02 | 1.08E-02 |
Linearized Crank-Nicolson [39] | 1/16 | 1.15E-02 | 1.08E-02 |
[1] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[2] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[3] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[4] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[5] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[6] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[7] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[8] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[9] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[10] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[11] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[12] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[13] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[14] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[15] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[16] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[17] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[18] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
[19] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[20] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]