• Previous Article
    Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields
  • DCDS-B Home
  • This Issue
  • Next Article
    Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows
February  2021, 26(2): 847-860. doi: 10.3934/dcdsb.2020144

Chaos control in a special pendulum system for ultra-subharmonic resonance

1. 

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xianwei Chen

Received  January 2019 Revised  December 2019 Published  May 2020

Fund Project: This work is supported by the Province Natural Science Foundation of Hunan (No. 2018JJ2110)

In this paper, we study the chaos control of pendulum system with vibration of suspension axis for ultra-subharmonic resonance by using Melnikov methods, and give a necessary condition for controlling heteroclinic chaos and homoclinic chaos, respectively. We give some bifurcation diagrams by numerical simulations, which indicate that the chaos behaviors for ultra-subharmonic resonance may be inhibited to periodic orbits by adjusting phase-difference of parametric excitation, and prove that results obtained are very effective in inhibiting chaos for ultra-subharmonic resonance.

Citation: Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144
References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.  Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.  Google Scholar

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.  Google Scholar

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.  Google Scholar

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.   Google Scholar

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210.   Google Scholar

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.  Google Scholar

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.  Google Scholar

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.  Google Scholar

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.  Google Scholar

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.  Google Scholar

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.  Google Scholar

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.  Google Scholar

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.  Google Scholar

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.  Google Scholar

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.  Google Scholar

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.  Google Scholar

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.  Google Scholar

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.  Google Scholar

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.  Google Scholar

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.  Google Scholar

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.  Google Scholar

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.  Google Scholar

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203.   Google Scholar

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996. Google Scholar

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001. Google Scholar

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.  Google Scholar

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.  Google Scholar

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.  Google Scholar

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.  Google Scholar

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.  Google Scholar

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.  Google Scholar

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.  Google Scholar

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.  Google Scholar

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.  Google Scholar

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.  Google Scholar

show all references

References:
[1]

T. S. Amer, The dynamical behavior of a rigid body relative equilibrium position, Advances in Mathematical Physics, 2017 (2017), Art. ID 8070525, 13pages. doi: 10.1155/2017/8070525.  Google Scholar

[2]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. Sound Vibration, 181 (1996), 142-147.  doi: 10.1006/jsvi.1996.0011.  Google Scholar

[3]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548.  doi: 10.1103/PhysRevLett.66.2545.  Google Scholar

[4]

H. J. CaoX. B. Chi and G. R. Chen, Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum, Int. J. Bifurcat. Chaos, 14 (2004), 1115-1120.  doi: 10.1142/S0218127404009673.  Google Scholar

[5]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337.  doi: 10.1103/PhysRevE.52.2330.  Google Scholar

[6]

R. ChacónF. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.   Google Scholar

[7]

R. Chacón, Relative effectiveness of weak periodic excitations in suppressing homoclinic heteroclinic chaos, Eur. Phys. J. B, 65 (2002), 207-210.   Google Scholar

[8]

L. J. Chen and J. B. Li, Chaotic behavior and subharmonic bifurcations for a rotating predulum equation, Int. J. Bifurcation Chaos, 14 (2004), 3477-3488.  doi: 10.1142/S0218127404011478.  Google Scholar

[9]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift, Int. J. Bifurcat. Chaos, 22 (2012), 1250307, 40 pp. doi: 10.1142/S0218127412503075.  Google Scholar

[10]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations and phase shift, Nonlinear Dyn., 78 (2014), 317-327.  doi: 10.1007/s11071-014-1441-y.  Google Scholar

[11]

X. W. ChenZ. J. Jing and X. L. Fu, Chaos control in a pendulum system with excitations, Discrete and Continuous Dynamical Systems Series B, 20 (2015), 373-383.  doi: 10.3934/dcdsb.2015.20.373.  Google Scholar

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, J. Sound Vibr., 172 (1994), 572-576.  doi: 10.1006/jsvi.1994.1199.  Google Scholar

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196.  doi: 10.1016/0375-9601(95)00255-2.  Google Scholar

[14]

D. D. A. Costa and M. A. Savi, Nonlinear dynamics of an SMA-pendulum system, Nonlinear Dynamics, 87 (2017), 1617-1627.  doi: 10.1007/s11071-016-3137-y.  Google Scholar

[15]

D. D. A. Costa and M. A. Savi, Chaos control of an SMA–pendulum system using thermal actuation with extended time-delayed feedback approach, Nonlinear Dynamics, 93 (2018), 571-583.  doi: 10.1007/s11071-018-4210-5.  Google Scholar

[16]

D. D'HumieresM. R. BeasleyB. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492.  doi: 10.1103/PhysRevA.26.3483.  Google Scholar

[17]

W. X. DingH. Q. SheW. Huang and C. X. Yu, Controlling chaos in a discharge plasma, Phys. Rev. Lett., 72 (1994), 96-99.  doi: 10.1103/PhysRevLett.72.96.  Google Scholar

[18]

W. L. Ditto, S. N. Rauseo and M. L. Spano, Experimental control of chaos, Controlling Chaos, (1996), 105–107. doi: 10.1016/B978-012396840-1/50035-7.  Google Scholar

[19]

X. L. FuJ. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English series, 26 (2010), 55-78.  doi: 10.1007/s10255-008-8276-6.  Google Scholar

[20]

W. Garira and S. R. Bishop, Rotating solutions of the parametrically excited pendulum, J. Sound Vibr., 263 (2003), 233-239.  doi: 10.1016/S0022-460X(02)01435-9.  Google Scholar

[21]

Z. J. JingK. Y. ChanD. S. Xu and H. J. Cao, Bifurcation of periodic solutions and chaos in Josephson system, Discr. Contin. Dyn. Syst.-Series A, 7 (2001), 573-592.  doi: 10.3934/dcds.2001.7.573.  Google Scholar

[22]

Z. J. Jing and H. J. Chao, Bifurcation of periodic orbits in Josephson equation with a phase shift, Int. J. Bifurcation and Chaos, 12 (2002), 1515-1530.  doi: 10.1142/S0218127402005261.  Google Scholar

[23]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅰ), Int. J. Bifurcat. Chaos, 16 (2006), 2887-2902.  doi: 10.1142/S0218127406016525.  Google Scholar

[24]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (Ⅱ), Int. J. Bifurcat. Chaos, 16 (2006), 3053-3078.  doi: 10.1142/S0218127406016653.  Google Scholar

[25]

T. Kapitaniak, Introduction, Chaos Solitons Fractals, 15 (2003), 201-203.   Google Scholar

[26]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations–Controlling and Synchronization, , Singapore: World Scientific, 1996. Google Scholar

[27]

P. S. Landa, Regular and Chaotic Oscillations, Spring-Verlag, 2001. Google Scholar

[28]

M. LeviF. Hoppensteadt and W. Miranke, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[29]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solit. Fract., 20 (2004), 593-607.  doi: 10.1016/j.chaos.2003.08.010.  Google Scholar

[30]

R. Lima and M. Pettine, Suppression of chaos by resonant parametric perturbations, Phys. Rev. A, 41 (1990), 726-733.  doi: 10.1103/PhysRevA.41.726.  Google Scholar

[31] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[32]

S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, John Wiley, New York, 1990.  Google Scholar

[33]

E. S. RuslanF. Alexander and L. Daniel, Energy control of a pendulum with quantized feedback, Automatica, 67 (2016), 171-177.  doi: 10.1016/j.automatica.2016.01.019.  Google Scholar

[34]

M. Salerno, Suppression of phase-locking chaos in long Josephson junctions by biharmonic microwave fields, Phys. Rev. B, 44 (1991), 2720-2726.  doi: 10.1103/PhysRevB.44.2720.  Google Scholar

[35]

M. Salerno and M. R. Samuelsen, Stabilization of chaotic phase locked dynamics in long Josephson junctions, Phys. Lett. A, 190 (1994), 177-181.  doi: 10.1016/0375-9601(94)90073-6.  Google Scholar

[36]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207.  doi: 10.1016/j.chaos.2003.10.011.  Google Scholar

[37]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

[38]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcation and Chaos, 7 (1997), 2827-2835.  doi: 10.1142/S0218127497001904.  Google Scholar

[39]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737.  doi: 10.1016/j.chaos.2006.05.065.  Google Scholar

[40]

J. P. Yang and Z. J. Jing, Control of chaos in a three-well duffing system, Chaos, Solitons and Fractals, 41 (2009), 1311-1328.  doi: 10.1016/j.chaos.2008.05.018.  Google Scholar

[41]

J. P. Yang and Z. J. Jing, Controlling in a pendulum equation with ultra-subharmonic resonances, Chaos, Solitons and Fractals, 42 (2009), 1214-1226.  doi: 10.1016/j.chaos.2009.03.035.  Google Scholar

Figure 1.  Phase portrait of system (2) for $ \alpha = 0.1 $.
Figure 2.  The chaotic attractor of system (1) for $ \alpha = 0.1, \; \omega = 1.5, \; \delta = 0.38, \; f_1 = 1.381 $, $ \gamma = 0.01 $ and $ f_0 = 0 $.
Figure 3.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 4.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.2 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $.
Figure 5.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 0.4 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $.
Figure 6.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ f_0 = 2 $, $ \delta = 0.38 $, $ \Omega = 0.75 $ and $ \omega = 1.5 $.
Figure 7.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 0.5 $ and $ \omega = 1.5 $: (a) $ f_0 = 1 $; (b) $ f_0 = 4 $.
Figure 8.  The bifurcation diagram of system (1) in ($ \Psi $, x) plane for $ \alpha = 0.1 $, $ f_1 = 1.381 $, $ \delta = 0.38 $, $ \Omega = 1 $ and $ \omega = 1.5 $: (a) $ f_0 = 2 $; (b) $ f_0 = 2.5 $.
[1]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[4]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[5]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[8]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[9]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[16]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[17]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[18]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[19]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (266)
  • Cited by (0)

Other articles
by authors

[Back to Top]