# American Institute of Mathematical Sciences

February  2021, 26(2): 861-873. doi: 10.3934/dcdsb.2020145

## Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields

 1 Department of Mathematics, Jinan University, Guangzhou 510632, P.R. China 2 School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, P.R. China

* Corresponding author: Jianfeng Huang

Received  January 2019 Revised  January 2020 Published  May 2020

Fund Project: The first author is supported by the NSF of China (No.11401255, No.11771101) and the China Scholarship Council (No.201606785007). The second author is supported by the NSF of China (No.11771101), the major research program of colleges and universities in Guangdong Province (No.2017KZDXM054), and the Science and Technology Program of Guangzhou, China (201805010001)

In this paper we consider the limit cycles of the planar system
 \begin{align*} \frac{d}{dt}(x,y) = \boldsymbol X_n+\boldsymbol X_m, \end{align*}
where
 $\boldsymbol X_n$
and
 $\boldsymbol X_m$
are quasi-homogeneous vector fields of degree
 $n$
and
 $m$
respectively. We prove that under a new hypothesis, the maximal number of limit cycles of the system is
 $1$
. We also show that our result can be applied to some systems when the previous results are invalid. The proof is based on the investigations for the Abel equation and the generalized-polar equation associated with the system, respectively. Usually these two kinds of equations need to be dealt with separately, and for both equations, an efficient approach to estimate the number of periodic solutions is constructing suitable auxiliary functions. In the present paper we introduce a formula on the divergence, which allows us to construct an auxiliary function of one equation with the auxiliary function of the other equation, and vice versa.
Citation: Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145
##### References:
 [1] A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.  doi: 10.1016/j.na.2009.09.012.  Google Scholar [2] A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar [3] A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar [4] M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar [5] R. Benterki and J. Llibre, Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.  doi: 10.1016/j.jmaa.2013.04.076.  Google Scholar [6] L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar [7] L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar [8] M. Carbonell and J. Llibre, Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.  doi: 10.1017/S0308210500026755.  Google Scholar [9] J. Chavarriga, I. A. Garcia and J. Gine, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.  doi: 10.1142/S0218127401002390.  Google Scholar [10] L. A. Čerkas, Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.   Google Scholar [11] A. Cima, A. Gasull and F. Mańosas, Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar [12] A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar [13] B. Coll, A. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.  doi: 10.4153/CJM-1997-011-0.  Google Scholar [14] A. Gasull and J. Llibre, Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar [15] A. Gasull, J. Yu and X. Zhang, Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.  doi: 10.1016/j.jde.2015.01.009.  Google Scholar [16] L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar [17] J. Giné, M. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar [18] J. Huang and H. Liang, A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.  doi: 10.1016/j.jmaa.2017.08.008.  Google Scholar [19] J. Huang, H. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.  doi: 10.1016/j.jde.2018.05.019.  Google Scholar [20] J. Huang and Y. Zhao, Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar [21] W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar [22] J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.  doi: 10.1006/jdeq.1996.0038.  Google Scholar [23] J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.  doi: 10.3934/dcds.2000.6.809.  Google Scholar [24] J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.   Google Scholar [25] J. Llibre and C. Valls, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.  doi: 10.1016/j.jde.2008.12.006.  Google Scholar [26] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar [27] N. G. Lloyd and J. M. Pearson, Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.  doi: 10.1088/0305-4470/32/10/014.  Google Scholar [28] K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.   Google Scholar

show all references

##### References:
 [1] A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.  doi: 10.1016/j.na.2009.09.012.  Google Scholar [2] A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar [3] A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar [4] M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar [5] R. Benterki and J. Llibre, Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.  doi: 10.1016/j.jmaa.2013.04.076.  Google Scholar [6] L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.  doi: 10.1016/S0362-546X(96)00088-0.  Google Scholar [7] L. Cairó and J. Llibre, Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.  doi: 10.1016/S0362-546X(98)00177-1.  Google Scholar [8] M. Carbonell and J. Llibre, Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.  doi: 10.1017/S0308210500026755.  Google Scholar [9] J. Chavarriga, I. A. Garcia and J. Gine, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.  doi: 10.1142/S0218127401002390.  Google Scholar [10] L. A. Čerkas, Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.   Google Scholar [11] A. Cima, A. Gasull and F. Mańosas, Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.  doi: 10.4064/am-24-3-281-287.  Google Scholar [12] A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.  doi: 10.1016/0022-247X(90)90359-N.  Google Scholar [13] B. Coll, A. Gasull and R. Prohens, Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.  doi: 10.4153/CJM-1997-011-0.  Google Scholar [14] A. Gasull and J. Llibre, Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar [15] A. Gasull, J. Yu and X. Zhang, Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.  doi: 10.1016/j.jde.2015.01.009.  Google Scholar [16] L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar [17] J. Giné, M. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar [18] J. Huang and H. Liang, A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.  doi: 10.1016/j.jmaa.2017.08.008.  Google Scholar [19] J. Huang, H. Liang and J. Llibre, Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.  doi: 10.1016/j.jde.2018.05.019.  Google Scholar [20] J. Huang and Y. Zhao, Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar [21] W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar [22] J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.  doi: 10.1006/jdeq.1996.0038.  Google Scholar [23] J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.  doi: 10.3934/dcds.2000.6.809.  Google Scholar [24] J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.   Google Scholar [25] J. Llibre and C. Valls, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.  doi: 10.1016/j.jde.2008.12.006.  Google Scholar [26] N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar [27] N. G. Lloyd and J. M. Pearson, Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.  doi: 10.1088/0305-4470/32/10/014.  Google Scholar [28] K. S. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.   Google Scholar
The dot curve represents the curve $b_n(\theta)+b_m(\theta)r = 0$ in Cartesian coordinates, which is the inner boundary of the region $U$
 [1] Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 [2] Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 [3] Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 [4] Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 [5] Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320 [6] Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 [7] Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 [8] Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 [9] Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001 [10] Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 [11] Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 [12] Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 [13] Yichen Zhang, Meiqiang Feng. A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 [14] Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 [15] Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 [16] Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440 [17] Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368 [18] Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 [19] Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 [20] Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables