
-
Previous Article
On the rigid-lid approximation of shallow water Bingham
- DCDS-B Home
- This Issue
-
Next Article
Chaos control in a special pendulum system for ultra-subharmonic resonance
Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields
1. | Department of Mathematics, Jinan University, Guangzhou 510632, P.R. China |
2. | School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, P.R. China |
$ \begin{align*} \frac{d}{dt}(x,y) = \boldsymbol X_n+\boldsymbol X_m, \end{align*} $ |
$ \boldsymbol X_n $ |
$ \boldsymbol X_m $ |
$ n $ |
$ m $ |
$ 1 $ |
References:
[1] |
A. Algaba, E. Freire, E. Gamero and C. García,
Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.
doi: 10.1016/j.na.2009.09.012. |
[2] |
A. Algaba, E. Gamero and C. García,
The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes,
Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[4] |
M. J. Álvarez, A. Gasull and H. Giacomini,
A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.
doi: 10.1016/j.jde.2006.11.004. |
[5] |
R. Benterki and J. Llibre,
Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.
doi: 10.1016/j.jmaa.2013.04.076. |
[6] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.
doi: 10.1016/S0362-546X(96)00088-0. |
[7] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.
doi: 10.1016/S0362-546X(98)00177-1. |
[8] |
M. Carbonell and J. Llibre,
Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.
doi: 10.1017/S0308210500026755. |
[9] |
J. Chavarriga, I. A. Garcia and J. Gine,
On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.
doi: 10.1142/S0218127401002390. |
[10] |
L. A. Čerkas,
Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.
|
[11] |
A. Cima, A. Gasull and F. Mańosas,
Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.
doi: 10.4064/am-24-3-281-287. |
[12] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[13] |
B. Coll, A. Gasull and R. Prohens,
Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.
doi: 10.4153/CJM-1997-011-0. |
[14] |
A. Gasull and J. Llibre,
Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, J. Yu and X. Zhang,
Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.
doi: 10.1016/j.jde.2015.01.009. |
[16] |
L. Gavrilov, J. Giné and M. Grau,
On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[17] |
J. Giné, M. Grau and J. Llibre,
Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.
doi: 10.1016/j.jde.2015.08.014. |
[18] |
J. Huang and H. Liang,
A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.
doi: 10.1016/j.jmaa.2017.08.008. |
[19] |
J. Huang, H. Liang and J. Llibre,
Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.
doi: 10.1016/j.jde.2018.05.019. |
[20] |
J. Huang and Y. Zhao,
Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.
doi: 10.1016/j.jde.2012.03.021. |
[21] |
W. Li, J. Llibre, J. Yang and Z. Zhang,
Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[22] |
J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez,
Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.
doi: 10.1006/jdeq.1996.0038. |
[23] |
J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez,
Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.
doi: 10.3934/dcds.2000.6.809. |
[24] |
J. Llibre and G. Świrszcz,
On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.
|
[25] |
J. Llibre and C. Valls,
Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.
doi: 10.1016/j.jde.2008.12.006. |
[26] |
N. G. Lloyd,
A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[27] |
N. G. Lloyd and J. M. Pearson,
Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.
doi: 10.1088/0305-4470/32/10/014. |
[28] |
K. S. Sibirskii,
On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.
|
show all references
References:
[1] |
A. Algaba, E. Freire, E. Gamero and C. García,
Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal., 72 (2010), 1726-1736.
doi: 10.1016/j.na.2009.09.012. |
[2] |
A. Algaba, E. Gamero and C. García,
The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
A. Algaba, C. García and M. Reyes,
Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mt. J. Math., 41 (2011), 1-22.
doi: 10.1216/RMJ-2011-41-1-1. |
[4] |
M. J. Álvarez, A. Gasull and H. Giacomini,
A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.
doi: 10.1016/j.jde.2006.11.004. |
[5] |
R. Benterki and J. Llibre,
Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407 (2013), 16-22.
doi: 10.1016/j.jmaa.2013.04.076. |
[6] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅰ), Nonlinear Anal., 29 (1997), 783-811.
doi: 10.1016/S0362-546X(96)00088-0. |
[7] |
L. Cairó and J. Llibre,
Phase portraits of planar semi-homogeneous vector fields (Ⅱ), Nonlinear Anal., 39 (2000), 351-363.
doi: 10.1016/S0362-546X(98)00177-1. |
[8] |
M. Carbonell and J. Llibre,
Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh, 109 (1988), 187-199.
doi: 10.1017/S0308210500026755. |
[9] |
J. Chavarriga, I. A. Garcia and J. Gine,
On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifurcation Chaos, 11 (2011), 711-722.
doi: 10.1142/S0218127401002390. |
[10] |
L. A. Čerkas,
Number of limit cycles of an autonomous second-order system, Differ. Uravn., 12 (1976), 944-946.
|
[11] |
A. Cima, A. Gasull and F. Mańosas,
Limit cycles for vector fields with homogeneous components, Appl. Math., 24 (1997), 281-287.
doi: 10.4064/am-24-3-281-287. |
[12] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[13] |
B. Coll, A. Gasull and R. Prohens,
Differential equations defined by the sum of two quasi-homogeneous vector fields, Can. J. Math., 49 (1997), 212-231.
doi: 10.4153/CJM-1997-011-0. |
[14] |
A. Gasull and J. Llibre,
Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[15] |
A. Gasull, J. Yu and X. Zhang,
Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258 (2015), 3286-3303.
doi: 10.1016/j.jde.2015.01.009. |
[16] |
L. Gavrilov, J. Giné and M. Grau,
On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[17] |
J. Giné, M. Grau and J. Llibre,
Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.
doi: 10.1016/j.jde.2015.08.014. |
[18] |
J. Huang and H. Liang,
A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities, J. Math. Anal. Appl., 457 (2018), 498-521.
doi: 10.1016/j.jmaa.2017.08.008. |
[19] |
J. Huang, H. Liang and J. Llibre,
Non-existence and uniqueness of limit cycles for planar polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 265 (2018), 3888-3913.
doi: 10.1016/j.jde.2018.05.019. |
[20] |
J. Huang and Y. Zhao,
Periodic solutions for equation $\dot{x}=A(t)x^m+B(t)x^n+C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.
doi: 10.1016/j.jde.2012.03.021. |
[21] |
W. Li, J. Llibre, J. Yang and Z. Zhang,
Limit cycles bifurcating from the period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations, 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[22] |
J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez,
Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520.
doi: 10.1006/jdeq.1996.0038. |
[23] |
J. Llibre, Jesús S. Pérez del Río and J. A. Rodríguez,
Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828.
doi: 10.3934/dcds.2000.6.809. |
[24] |
J. Llibre and G. Świrszcz,
On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst, 18 (2011), 203-214.
|
[25] |
J. Llibre and C. Valls,
Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, 246 (2009), 2192-2204.
doi: 10.1016/j.jde.2008.12.006. |
[26] |
N. G. Lloyd,
A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.
doi: 10.1112/jlms/s2-20.2.277. |
[27] |
N. G. Lloyd and J. M. Pearson,
Bifurcation of limit cycles and integrability of planar dynamical systems in complex form, J. Phys. A: Math. Gen., 32 (1999), 1973-1984.
doi: 10.1088/0305-4470/32/10/014. |
[28] |
K. S. Sibirskii,
On the number of limit cycles in the neighborhood of a singular point, Differential Equations, 1 (1965), 53-66.
|

[1] |
Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 |
[2] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[3] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[4] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[5] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[6] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[7] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[8] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[9] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[10] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[11] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[12] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[13] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[14] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[15] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[16] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[17] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[18] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[19] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[20] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]