
-
Previous Article
Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force
- DCDS-B Home
- This Issue
-
Next Article
A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator
Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China |
This paper considers a two-patch mutualism system derived from exchange of resource for resource, where the obligate mutualist can diffuse asymmetrically between patches. First, we give a complete analysis on dynamics of the system without diffusion, which exhibit how resource production of the obligate mutualist leads to its survival/extinction. Using monotone dynamics theory, we show global stability of a positive equilibrium in the three-dimensional system with diffusion. A novel finding of this work is that the obligate species' final abundance is explicitly expressed as a function of the diffusion rate and asymmetry, which demonstrates precise mechanisms by which the diffusion and asymmetry lead to the abundance higher than if non-diffusing, even though the facultative species declines. It is shown that for a fixed diffusion rate, intermediate asymmetry is favorable while extremely large asymmetry is unfavorable; For a fixed asymmetry, small diffusion is favorable while extremely large asymmetry is unfavorable. Initial densities of the species are also shown to be important in species' persistence and abundance. Numerical simulations confirm and extend our results.
References:
[1] |
R. Arditi, C. Lobry and T. Sari,
Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.
doi: 10.1016/j.tpb.2015.10.001. |
[2] |
R. Arditi, C. Lobry and T. Sari,
Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.
doi: 10.1016/j.tpb.2017.12.006. |
[3] |
J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt,
Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.
|
[4] |
C. J. Briggs and M. F. Hoopes,
Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.
doi: 10.1016/j.tpb.2003.11.001. |
[5] |
G. J. Butler, H. I. Freedman and P. Waltman,
Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.
doi: 10.1090/S0002-9939-1986-0822433-4. |
[6] |
L. Fahrig,
Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.
|
[7] |
H. I. Freedman and D. Waltman,
Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.
doi: 10.1137/0132052. |
[8] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[9] |
R. D. Holt,
Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.
doi: 10.1016/0040-5809(85)90027-9. |
[10] |
J. N. Holland and D. L. DeAngelis,
A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.
|
[11] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[12] |
V. A. A. Jansen,
The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.
doi: 10.1006/tpbi.2000.1506. |
[13] |
J. Jiang,
Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.
doi: 10.1006/jmaa.1994.1413. |
[14] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[15] |
T. A. Revilla,
Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.
doi: 10.1016/j.jtbi.2015.04.012. |
[16] |
S. Rinaldi and M. Scheffer,
Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.
doi: 10.1007/s100210000045. |
[17] |
A. Ruiz-Herrera and P. J. Torres,
Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.
doi: 10.1016/j.jtbi.2018.03.018. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.
![]() ![]() |
[19] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() ![]() |
[20] |
G. Takimoto and K. Suzuki,
Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.
doi: 10.1111/oik.02741. |
[21] |
J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. |
[22] |
Y. Wang and D. L. DeAngelis,
Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.
|
[23] |
Y. Wang, H. Wu and D. L. DeAngelis,
Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.
doi: 10.1007/s00285-018-1288-9. |
[24] |
B. Zhang, K. Alex, M. L. Keenan, Z. Lu, L. R. Arrix, W.-M. Ni, D. L. DeAngelis and J. D. Dyken,
Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.
doi: 10.1111/ele.12807. |
show all references
References:
[1] |
R. Arditi, C. Lobry and T. Sari,
Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.
doi: 10.1016/j.tpb.2015.10.001. |
[2] |
R. Arditi, C. Lobry and T. Sari,
Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.
doi: 10.1016/j.tpb.2017.12.006. |
[3] |
J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt,
Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970.
|
[4] |
C. J. Briggs and M. F. Hoopes,
Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.
doi: 10.1016/j.tpb.2003.11.001. |
[5] |
G. J. Butler, H. I. Freedman and P. Waltman,
Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.
doi: 10.1090/S0002-9939-1986-0822433-4. |
[6] |
L. Fahrig,
Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.
|
[7] |
H. I. Freedman and D. Waltman,
Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.
doi: 10.1137/0132052. |
[8] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[9] |
R. D. Holt,
Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.
doi: 10.1016/0040-5809(85)90027-9. |
[10] |
J. N. Holland and D. L. DeAngelis,
A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.
|
[11] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[12] |
V. A. A. Jansen,
The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.
doi: 10.1006/tpbi.2000.1506. |
[13] |
J. Jiang,
Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.
doi: 10.1006/jmaa.1994.1413. |
[14] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[15] |
T. A. Revilla,
Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.
doi: 10.1016/j.jtbi.2015.04.012. |
[16] |
S. Rinaldi and M. Scheffer,
Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.
doi: 10.1007/s100210000045. |
[17] |
A. Ruiz-Herrera and P. J. Torres,
Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.
doi: 10.1016/j.jtbi.2018.03.018. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.
![]() ![]() |
[19] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() ![]() |
[20] |
G. Takimoto and K. Suzuki,
Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.
doi: 10.1111/oik.02741. |
[21] |
J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. |
[22] |
Y. Wang and D. L. DeAngelis,
Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.
|
[23] |
Y. Wang, H. Wu and D. L. DeAngelis,
Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.
doi: 10.1007/s00285-018-1288-9. |
[24] |
B. Zhang, K. Alex, M. L. Keenan, Z. Lu, L. R. Arrix, W.-M. Ni, D. L. DeAngelis and J. D. Dyken,
Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.
doi: 10.1111/ele.12807. |






[1] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[2] |
Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861 |
[3] |
Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797 |
[4] |
Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 |
[5] |
Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 |
[6] |
Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189 |
[7] |
Joe Yuichiro Wakano. Spatiotemporal dynamics of cooperation and spite behavior by conformist transmission. Communications on Pure and Applied Analysis, 2012, 11 (1) : 375-386. doi: 10.3934/cpaa.2012.11.375 |
[8] |
Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239 |
[9] |
Karan Pattni, Mark Broom, Jan Rychtář. Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1975-2004. doi: 10.3934/dcdsb.2018191 |
[10] |
Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367 |
[11] |
Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034 |
[12] |
Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771 |
[13] |
Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108 |
[14] |
Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19 |
[15] |
H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221 |
[16] |
Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41 |
[17] |
Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19 |
[18] |
Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062 |
[19] |
Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022038 |
[20] |
Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]