
-
Previous Article
Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force
- DCDS-B Home
- This Issue
-
Next Article
A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator
Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China |
This paper considers a two-patch mutualism system derived from exchange of resource for resource, where the obligate mutualist can diffuse asymmetrically between patches. First, we give a complete analysis on dynamics of the system without diffusion, which exhibit how resource production of the obligate mutualist leads to its survival/extinction. Using monotone dynamics theory, we show global stability of a positive equilibrium in the three-dimensional system with diffusion. A novel finding of this work is that the obligate species' final abundance is explicitly expressed as a function of the diffusion rate and asymmetry, which demonstrates precise mechanisms by which the diffusion and asymmetry lead to the abundance higher than if non-diffusing, even though the facultative species declines. It is shown that for a fixed diffusion rate, intermediate asymmetry is favorable while extremely large asymmetry is unfavorable; For a fixed asymmetry, small diffusion is favorable while extremely large asymmetry is unfavorable. Initial densities of the species are also shown to be important in species' persistence and abundance. Numerical simulations confirm and extend our results.
References:
[1] |
R. Arditi, C. Lobry and T. Sari,
Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.
doi: 10.1016/j.tpb.2015.10.001. |
[2] |
R. Arditi, C. Lobry and T. Sari,
Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.
doi: 10.1016/j.tpb.2017.12.006. |
[3] |
J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970. Google Scholar |
[4] |
C. J. Briggs and M. F. Hoopes,
Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.
doi: 10.1016/j.tpb.2003.11.001. |
[5] |
G. J. Butler, H. I. Freedman and P. Waltman,
Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.
doi: 10.1090/S0002-9939-1986-0822433-4. |
[6] |
L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353. Google Scholar |
[7] |
H. I. Freedman and D. Waltman,
Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.
doi: 10.1137/0132052. |
[8] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() |
[9] |
R. D. Holt,
Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.
doi: 10.1016/0040-5809(85)90027-9. |
[10] |
J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295. Google Scholar |
[11] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[12] |
V. A. A. Jansen,
The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.
doi: 10.1006/tpbi.2000.1506. |
[13] |
J. Jiang,
Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.
doi: 10.1006/jmaa.1994.1413. |
[14] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[15] |
T. A. Revilla,
Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.
doi: 10.1016/j.jtbi.2015.04.012. |
[16] |
S. Rinaldi and M. Scheffer,
Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.
doi: 10.1007/s100210000045. |
[17] |
A. Ruiz-Herrera and P. J. Torres,
Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.
doi: 10.1016/j.jtbi.2018.03.018. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.
![]() |
[19] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[20] |
G. Takimoto and K. Suzuki,
Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.
doi: 10.1111/oik.02741. |
[21] |
J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar |
[22] |
Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37. Google Scholar |
[23] |
Y. Wang, H. Wu and D. L. DeAngelis,
Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.
doi: 10.1007/s00285-018-1288-9. |
[24] |
B. Zhang, K. Alex, M. L. Keenan, Z. Lu, L. R. Arrix, W.-M. Ni, D. L. DeAngelis and J. D. Dyken,
Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.
doi: 10.1111/ele.12807. |
show all references
References:
[1] |
R. Arditi, C. Lobry and T. Sari,
Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.
doi: 10.1016/j.tpb.2015.10.001. |
[2] |
R. Arditi, C. Lobry and T. Sari,
Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.
doi: 10.1016/j.tpb.2017.12.006. |
[3] |
J. $\hat{A}$str$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corri- dors in an experimental metacommunity, Ecology, 94 (2013), 1939-1970. Google Scholar |
[4] |
C. J. Briggs and M. F. Hoopes,
Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65 (2004), 299-315.
doi: 10.1016/j.tpb.2003.11.001. |
[5] |
G. J. Butler, H. I. Freedman and P. Waltman,
Uniformly persistent systems, Proc. Amer. Math. Sco., 96 (1986), 425-430.
doi: 10.1090/S0002-9939-1986-0822433-4. |
[6] |
L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353. Google Scholar |
[7] |
H. I. Freedman and D. Waltman,
Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J Appl Math., 32 (1977), 631-648.
doi: 10.1137/0132052. |
[8] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() |
[9] |
R. D. Holt,
Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28 (1985), 181-208.
doi: 10.1016/0040-5809(85)90027-9. |
[10] |
J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295. Google Scholar |
[11] |
V. Hutson, Y. Lou and K. Mischaikow,
Convergence in competition models with small diffusion coefficients, J. Diff. Equa., 211 (2005), 135-161.
doi: 10.1016/j.jde.2004.06.003. |
[12] |
V. A. A. Jansen,
The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59 (2001), 119-131.
doi: 10.1006/tpbi.2000.1506. |
[13] |
J. Jiang,
Three- and four-dimensional cooperative systems with every equilibrium stable, J. Math. Anal. Appl., 188 (1994), 92-100.
doi: 10.1006/jmaa.1994.1413. |
[14] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Equa., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[15] |
T. A. Revilla,
Numerical responses in resource-based mutualisms: A time scale approach, J. Theor. Biol., 378 (2015), 39-46.
doi: 10.1016/j.jtbi.2015.04.012. |
[16] |
S. Rinaldi and M. Scheffer,
Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507-521.
doi: 10.1007/s100210000045. |
[17] |
A. Ruiz-Herrera and P. J. Torres,
Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.
doi: 10.1016/j.jtbi.2018.03.018. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soci. Press, New York, USA, 1995.
![]() |
[19] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, New York: Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[20] |
G. Takimoto and K. Suzuki,
Global stability of obligate mutualism in community modules with facultative mutualists, OIKOS, 125 (2015), 535-540.
doi: 10.1111/oik.02741. |
[21] |
J. J. Tewksbury et al., Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 12923-12926. Google Scholar |
[22] |
Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37. Google Scholar |
[23] |
Y. Wang, H. Wu and D. L. DeAngelis,
Global dynamics of a mutualism-competition model with one resource and multiple consumers, J. Math. Biol., 78 (2019), 683-710.
doi: 10.1007/s00285-018-1288-9. |
[24] |
B. Zhang, K. Alex, M. L. Keenan, Z. Lu, L. R. Arrix, W.-M. Ni, D. L. DeAngelis and J. D. Dyken,
Carrying capacity in a heterogeneous environment with habitat connectivity, Ecology Letters, 20 (2017), 1118-1128.
doi: 10.1111/ele.12807. |






[1] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[2] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[3] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[4] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[5] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[6] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[7] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[8] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[9] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[10] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[11] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[12] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[13] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[14] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[15] |
Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043 |
[16] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[17] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[18] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[19] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[20] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]