-
Previous Article
Boundary dynamics of the replicator equations for neutral models of cyclic dominance
- DCDS-B Home
- This Issue
-
Next Article
Time scale-induced asynchronous discrete dynamical systems
Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity
1. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China |
2. | School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710071, P.R. China |
3. | School of Science, Chang'an University, Xi'an, Shaanxi 710064, P.R. China |
This paper mainly focuses on the entire solutions of nonlocal dispersal equations with bistable nonlinearity. Under certain assumptions of wave speed, firstly constructing appropriate super- and sub-solutions and applying corresponding comparison principle, we established the existence and related properties of entire solutions formed by the collision of three and four traveling wave solutions. Then by introducing the definition of terminated sequence, it is proved that there has no entire solutions formed by $ k $ traveling wave solutions that collide with each other as long as $ k\geq5 $. Finally, based on the classical weighted energy approach, we obtain the global exponentially stability of the entire solutions in some weighted space.
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
P. W. Bates and G. Zhao,
Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007. |
[3] |
J. F. Cao, Y. Du, F. Li and W. T. Li,
The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013. |
[4] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[5] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[6] |
X. Chen and J. S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[7] |
Y. Y. Chen,
Entire solutions originating from three fronts for a discrete diffusive equation, Tamkang Journal of Mathematics, 48 (2017), 215-226.
doi: 10.5556/j.tkjm.48.2017.2442. |
[8] |
Y. Y. Chen, J. S. Guo, N. Ninomiya and C. H. Yao,
Entire solutions originating from monotone fronts to the Allen-Cahn equation, Phys. D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[9] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
doi: 10.1016/j.jde.2006.12.002. |
[10] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[11] |
J. Coville, Traveling Fronts in Asymmetric Nonlocal Reaction Diffusion Equation: The Bistable and Ignition Case, Prépublication du CMM, Hal-00696208. Google Scholar |
[12] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[13] |
J. Coville and L. Dupaigne,
On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[14] |
E. C. M. Crooks and J. C. Tsai,
Front-like entire solutions for equations with convection, J. Differential Equations, 253 (2012), 1206-1249.
doi: 10.1016/j.jde.2012.04.022. |
[15] |
F. D. Dong, W. T. Li and J. B. Wang,
Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.
doi: 10.3934/dcds.2017272. |
[16] |
J. S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[17] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:103.0.CO;2-W. |
[18] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in $R^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[19] |
R. Huang, M. Mei and Y. Wang,
Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 32 (2012), 3621-3649.
doi: 10.3934/dcds.2012.32.3621. |
[20] |
R. Huang, M. Mei, K. J. Zhang and Q. F. Zhang,
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.
doi: 10.3934/dcds.2016.36.1331. |
[21] |
V. Hutson and M. Grinfeld,
Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.
doi: 10.1017/S0956792506006462. |
[22] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[23] |
L. I. Ignat and J. D. Rossi,
A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.
doi: 10.1016/j.jfa.2007.07.013. |
[24] |
W. T. Li, N. W. Liu and Z. C. Wang,
Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504.
doi: 10.1016/j.matpur.2008.07.002. |
[25] |
W. T. Li, Y. J. Sun and Z. C. Wang,
Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.
doi: 10.1016/j.nonrwa.2009.07.005. |
[26] |
W. T. Li, J. B. Wang and L. Zhang,
Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501.
doi: 10.1016/j.jde.2016.05.006. |
[27] |
W. T. Li, Z. C. Wang and J. Wu,
Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.
doi: 10.1016/j.jde.2008.03.023. |
[28] |
W. T. Li, L. Zhang and G. B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[29] |
Y. Li, W. T. Li and G. B. Zhang,
Stability and uniqueness of traveling waves of a nonlocal dispersal SIR epidemic model, Dyn. Partial Differ. Equ., 14 (2017), 87-123.
doi: 10.4310/DPDE.2017.v14.n2.a1. |
[30] |
C. K. Lin, C. T. Lin, Y. P. Lin and M. Mei,
Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.
doi: 10.1137/120904391. |
[31] |
N. W. Liu, W. T. Li and Z. C. Wang,
Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders, J. Differential Equations, 246 (2009), 4249-4267.
doi: 10.1016/j.jde.2008.12.005. |
[32] |
M. Mei, C. K. Lin, C. T. Lin and J. W. H. So,
Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529.
doi: 10.1016/j.jde.2008.12.020. |
[33] |
M. Mei, C. K. Lin, C. T. Lin and J. W. H. So,
Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510.
doi: 10.1016/j.jde.2008.12.026. |
[34] |
M. Mei, C. Ou and X. Q. Zhao,
Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790.
doi: 10.1137/090776342. |
[35] |
M. Mei and J. W. H. So,
Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.
doi: 10.1017/S0308210506000333. |
[36] |
M. Mei, J. W. H. So, M. Y. Li and S. S. Shen,
Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.
doi: 10.1017/S0308210500003358. |
[37] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[38] |
Y. Morita and K. Tachibana,
An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
doi: 10.1137/080723715. |
[39] |
S. Pan, W. T. Li and G. Lin,
Travelling wave fronts in nonlocal reaction–diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[40] |
K. Schumacher,
Travelling-front solutions for integro-differential equations, I, J. Reine Angew. Math., 1980 (2009), 54-70.
doi: 10.1515/crll.1980.316.54. |
[41] |
H. L. Smith and X. Q. Zhao,
Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
doi: 10.1137/S0036141098346785. |
[42] |
Y. J. Sun, W. T. Li and Z. C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020. |
[43] |
Y. J. Sun, L. Zhang, W. T. Li and Z. C. Wang,
Entire solutions in nonlocal monostable equations: Asymmetric case, Comm. Pure Appl. Anal., 18 (2019), 1049-1072.
doi: 10.3934/cpaa.2019051. |
[44] |
M. Wang and G. Lv,
Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010), 1609-1630.
doi: 10.1088/0951-7715/23/7/005. |
[45] |
Z. C. Wang, W. T. Li and S. Ruan,
Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084.
doi: 10.1090/S0002-9947-08-04694-1. |
[46] |
Z. C. Wang, W. T. Li and S. Ruan,
Entire solutions in lattice delayed differential equations with nonlocal interaction: bistable cases, Math. Model. Nat. Phenom., 8 (2013), 78-103.
doi: 10.1051/mmnp/20138307. |
[47] |
Z. C. Wang, W. T. Li and J. Wu,
Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.
doi: 10.1137/080727312. |
[48] |
S. L. Wu and C. H. Hsu,
Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.
doi: 10.3934/dcds.2016.36.2329. |
[49] |
S. L. Wu and S. Ruan,
Entire solutions for nonlocal dispersal equations with spatio-temporal delay: Monostable case, J. Differential Equations, 258 (2015), 2435-2470.
doi: 10.1016/j.jde.2014.12.013. |
[50] |
S. L. Wu, Z. X. Shi and F. Y. Yang,
Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.
doi: 10.1016/j.jde.2013.07.049. |
[51] |
S. L. Wu, Y. J. Sun and S. Y. Liu,
Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity, Discrete Contin. Dyn. Syst., 33 (2013), 921-946.
doi: 10.3934/dcds.2013.33.921. |
[52] |
T. Xu, S. Ji, R. Huang, M. Mei and J. Yin,
Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, Int. J. Numer. Anal. Model., 17 (2020), 68-86.
|
[53] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |
[54] |
G. B. Zhang and R. Ma,
Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844.
doi: 10.1007/s00033-013-0353-x. |
[55] |
L. Zhang, W. T. Li and Z. C. Wang,
Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel, Sci. China Math., 60 (2017), 1791-1804.
doi: 10.1007/s11425-016-9003-7. |
[56] |
L. Zhang, W. T. Li, Z. C. Wang and Y. J. Sun,
Entire solutions for nonlocal dispersal equations with bistable nonlinearity: asymmetric case, Acta Math. Sin. English Ser., 35 (2019), 1771-1794.
doi: 10.1007/s10114-019-8294-8. |
[57] |
L. Zhang, W. T. Li and S. L. Wu,
Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224.
doi: 10.1007/s10884-014-9416-8. |
show all references
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
P. W. Bates and G. Zhao,
Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007. |
[3] |
J. F. Cao, Y. Du, F. Li and W. T. Li,
The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772-2814.
doi: 10.1016/j.jfa.2019.02.013. |
[4] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[5] |
X. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[6] |
X. Chen and J. S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[7] |
Y. Y. Chen,
Entire solutions originating from three fronts for a discrete diffusive equation, Tamkang Journal of Mathematics, 48 (2017), 215-226.
doi: 10.5556/j.tkjm.48.2017.2442. |
[8] |
Y. Y. Chen, J. S. Guo, N. Ninomiya and C. H. Yao,
Entire solutions originating from monotone fronts to the Allen-Cahn equation, Phys. D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[9] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
doi: 10.1016/j.jde.2006.12.002. |
[10] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[11] |
J. Coville, Traveling Fronts in Asymmetric Nonlocal Reaction Diffusion Equation: The Bistable and Ignition Case, Prépublication du CMM, Hal-00696208. Google Scholar |
[12] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[13] |
J. Coville and L. Dupaigne,
On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[14] |
E. C. M. Crooks and J. C. Tsai,
Front-like entire solutions for equations with convection, J. Differential Equations, 253 (2012), 1206-1249.
doi: 10.1016/j.jde.2012.04.022. |
[15] |
F. D. Dong, W. T. Li and J. B. Wang,
Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.
doi: 10.3934/dcds.2017272. |
[16] |
J. S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[17] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:103.0.CO;2-W. |
[18] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in $R^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[19] |
R. Huang, M. Mei and Y. Wang,
Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 32 (2012), 3621-3649.
doi: 10.3934/dcds.2012.32.3621. |
[20] |
R. Huang, M. Mei, K. J. Zhang and Q. F. Zhang,
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.
doi: 10.3934/dcds.2016.36.1331. |
[21] |
V. Hutson and M. Grinfeld,
Non-local dispersal and bistability, European J. Appl. Math., 17 (2006), 221-232.
doi: 10.1017/S0956792506006462. |
[22] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[23] |
L. I. Ignat and J. D. Rossi,
A nonlocal convection-diffusion equation, J. Funct. Anal., 251 (2007), 399-437.
doi: 10.1016/j.jfa.2007.07.013. |
[24] |
W. T. Li, N. W. Liu and Z. C. Wang,
Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504.
doi: 10.1016/j.matpur.2008.07.002. |
[25] |
W. T. Li, Y. J. Sun and Z. C. Wang,
Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.
doi: 10.1016/j.nonrwa.2009.07.005. |
[26] |
W. T. Li, J. B. Wang and L. Zhang,
Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501.
doi: 10.1016/j.jde.2016.05.006. |
[27] |
W. T. Li, Z. C. Wang and J. Wu,
Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.
doi: 10.1016/j.jde.2008.03.023. |
[28] |
W. T. Li, L. Zhang and G. B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[29] |
Y. Li, W. T. Li and G. B. Zhang,
Stability and uniqueness of traveling waves of a nonlocal dispersal SIR epidemic model, Dyn. Partial Differ. Equ., 14 (2017), 87-123.
doi: 10.4310/DPDE.2017.v14.n2.a1. |
[30] |
C. K. Lin, C. T. Lin, Y. P. Lin and M. Mei,
Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.
doi: 10.1137/120904391. |
[31] |
N. W. Liu, W. T. Li and Z. C. Wang,
Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders, J. Differential Equations, 246 (2009), 4249-4267.
doi: 10.1016/j.jde.2008.12.005. |
[32] |
M. Mei, C. K. Lin, C. T. Lin and J. W. H. So,
Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529.
doi: 10.1016/j.jde.2008.12.020. |
[33] |
M. Mei, C. K. Lin, C. T. Lin and J. W. H. So,
Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510.
doi: 10.1016/j.jde.2008.12.026. |
[34] |
M. Mei, C. Ou and X. Q. Zhao,
Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790.
doi: 10.1137/090776342. |
[35] |
M. Mei and J. W. H. So,
Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.
doi: 10.1017/S0308210506000333. |
[36] |
M. Mei, J. W. H. So, M. Y. Li and S. S. Shen,
Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.
doi: 10.1017/S0308210500003358. |
[37] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[38] |
Y. Morita and K. Tachibana,
An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.
doi: 10.1137/080723715. |
[39] |
S. Pan, W. T. Li and G. Lin,
Travelling wave fronts in nonlocal reaction–diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[40] |
K. Schumacher,
Travelling-front solutions for integro-differential equations, I, J. Reine Angew. Math., 1980 (2009), 54-70.
doi: 10.1515/crll.1980.316.54. |
[41] |
H. L. Smith and X. Q. Zhao,
Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
doi: 10.1137/S0036141098346785. |
[42] |
Y. J. Sun, W. T. Li and Z. C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020. |
[43] |
Y. J. Sun, L. Zhang, W. T. Li and Z. C. Wang,
Entire solutions in nonlocal monostable equations: Asymmetric case, Comm. Pure Appl. Anal., 18 (2019), 1049-1072.
doi: 10.3934/cpaa.2019051. |
[44] |
M. Wang and G. Lv,
Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23 (2010), 1609-1630.
doi: 10.1088/0951-7715/23/7/005. |
[45] |
Z. C. Wang, W. T. Li and S. Ruan,
Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084.
doi: 10.1090/S0002-9947-08-04694-1. |
[46] |
Z. C. Wang, W. T. Li and S. Ruan,
Entire solutions in lattice delayed differential equations with nonlocal interaction: bistable cases, Math. Model. Nat. Phenom., 8 (2013), 78-103.
doi: 10.1051/mmnp/20138307. |
[47] |
Z. C. Wang, W. T. Li and J. Wu,
Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.
doi: 10.1137/080727312. |
[48] |
S. L. Wu and C. H. Hsu,
Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.
doi: 10.3934/dcds.2016.36.2329. |
[49] |
S. L. Wu and S. Ruan,
Entire solutions for nonlocal dispersal equations with spatio-temporal delay: Monostable case, J. Differential Equations, 258 (2015), 2435-2470.
doi: 10.1016/j.jde.2014.12.013. |
[50] |
S. L. Wu, Z. X. Shi and F. Y. Yang,
Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.
doi: 10.1016/j.jde.2013.07.049. |
[51] |
S. L. Wu, Y. J. Sun and S. Y. Liu,
Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity, Discrete Contin. Dyn. Syst., 33 (2013), 921-946.
doi: 10.3934/dcds.2013.33.921. |
[52] |
T. Xu, S. Ji, R. Huang, M. Mei and J. Yin,
Theoretical and numerical studies on global stability of traveling waves with oscillations for time-delayed nonlocal dispersion equations, Int. J. Numer. Anal. Model., 17 (2020), 68-86.
|
[53] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |
[54] |
G. B. Zhang and R. Ma,
Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844.
doi: 10.1007/s00033-013-0353-x. |
[55] |
L. Zhang, W. T. Li and Z. C. Wang,
Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel, Sci. China Math., 60 (2017), 1791-1804.
doi: 10.1007/s11425-016-9003-7. |
[56] |
L. Zhang, W. T. Li, Z. C. Wang and Y. J. Sun,
Entire solutions for nonlocal dispersal equations with bistable nonlinearity: asymmetric case, Acta Math. Sin. English Ser., 35 (2019), 1771-1794.
doi: 10.1007/s10114-019-8294-8. |
[57] |
L. Zhang, W. T. Li and S. L. Wu,
Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224.
doi: 10.1007/s10884-014-9416-8. |
[1] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[2] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[3] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[4] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[5] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[6] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[7] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[8] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[9] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[10] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[11] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[12] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[13] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[14] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[15] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[16] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[17] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[18] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[19] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[20] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]