• Previous Article
    Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary
  • DCDS-B Home
  • This Issue
  • Next Article
    Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity
February  2021, 26(2): 1061-1082. doi: 10.3934/dcdsb.2020153

Boundary dynamics of the replicator equations for neutral models of cyclic dominance

University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC, Canada V1V1V7

Received  July 2019 Revised  February 2020 Published  May 2020

Fund Project: The author is supported by an NSERC Discovery grant

We study the replicator equations, also known as mean-field equations, for a simple model of cyclic dominance with any number $ m $ of strategies, generalizing the rock-paper-scissors model which corresponds to the case $ m = 3 $. Previously the dynamics were solved for $ m\in\{3,4\} $ by consideration of $ m-2 $ conserved quantities. Here we show that for any $ m $, the boundary of the phase space is partitioned into heteroclinic networks for which we give a precise description. A set of $ {\lfloor} m/2{\rfloor} $ conserved quantities plays an important role in the analysis. We also discuss connections to the well-mixed stochastic version of the model.

Citation: Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153
References:
[1]

H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen. De Gruyter Studies in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1990. doi: 10.1515/9783110853698.  Google Scholar

[2]

M. Bramson and D. Griffeath, Flux and fixation in cyclic particle systems, The Annals of Probability, 17 (1989), 26-45.  doi: 10.1214/aop/1176991492.  Google Scholar

[3]

M. Berr, T. Reichenbach, M. Schottenloher and E. Frey, Zero-one survival behavior of cyclically competing species, Physical Review Letters, 102 (2009), 048102. Google Scholar

[4]

S. O. Case, C. H. Durney, M. Pleimling and R. K. P. Zia, Cyclic competition of four species: Mean-field theory and stochastic evolution, Europhysics Letters, 92 (2011), 58003. Google Scholar

[5]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J Appl Dyn Sys, 8 (2009), 1160-1189.  doi: 10.1137/080722734.  Google Scholar

[6]

H. I. Freedman and P. Waltman, Persistence in a model of three competitive populations, Mathematical Biosciences, 73 (1985), 89-101.  doi: 10.1016/0025-5564(85)90078-1.  Google Scholar

[7]

E. Foxall and H. Lyu, Clustering in the three and four color cyclic particle systems in one dimension, Journal of Statistical Physics, 171 (2018), 470-483.  doi: 10.1007/s10955-018-2004-2.  Google Scholar

[8]

M. E. Gilpin, Limit cycles in competition communities, The American Naturalist, 109 (1975), 51-60.   Google Scholar

[9]

T. G. Kurtz, Strong approximation theorems for density-dependent Markov chains, Stochastic Processes and their Applications, 6 (1978), 223-240.  doi: 10.1016/0304-4149(78)90020-0.  Google Scholar

[10]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM Journal on Applied Mathematics, 29 (1975), 243-253.  doi: 10.1137/0129022.  Google Scholar

[11]

M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations, Journal of Theoretical Biology, 264 (2010), 1-10.  doi: 10.1016/j.jtbi.2010.01.008.  Google Scholar

[12]

A. Szolnoki, M. Mobilia, L. L. Jiang, B. Szczesny, A. M. Rucklidge and M. Perc, Cyclic dominance in evolutionary games: A review, Journal of the Royal Society Interface, 11 (2014), 20140735. Google Scholar

[13]

A. Szolnoki and M. Perc, Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies, Physical Review X, 3 (2013), 041021. Google Scholar

[14]

A. Szolnoki, M. Perc and G. Szabó, Defense Mechanisms of Empathetic Players in the Spatial Ultimatum Game., Physical Review Letters, 109 (2012), 078701. Google Scholar

[15]

A. Szolnoki and M. Perc, Evolutionary dynamics of cooperation in neutral populations, New Journal of Physics, 20 (2018), 013031, 9pp. doi: 10.1088/1367-2630/aa9fd2.  Google Scholar

[16]

P. SchusterK. Sigmund and R. Wolff, On $\omega$-limits for competition between three species, SIAM Journal on Applied Mathematics, 37 (1979), 49-54.  doi: 10.1137/0137004.  Google Scholar

show all references

References:
[1]

H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen. De Gruyter Studies in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1990. doi: 10.1515/9783110853698.  Google Scholar

[2]

M. Bramson and D. Griffeath, Flux and fixation in cyclic particle systems, The Annals of Probability, 17 (1989), 26-45.  doi: 10.1214/aop/1176991492.  Google Scholar

[3]

M. Berr, T. Reichenbach, M. Schottenloher and E. Frey, Zero-one survival behavior of cyclically competing species, Physical Review Letters, 102 (2009), 048102. Google Scholar

[4]

S. O. Case, C. H. Durney, M. Pleimling and R. K. P. Zia, Cyclic competition of four species: Mean-field theory and stochastic evolution, Europhysics Letters, 92 (2011), 58003. Google Scholar

[5]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J Appl Dyn Sys, 8 (2009), 1160-1189.  doi: 10.1137/080722734.  Google Scholar

[6]

H. I. Freedman and P. Waltman, Persistence in a model of three competitive populations, Mathematical Biosciences, 73 (1985), 89-101.  doi: 10.1016/0025-5564(85)90078-1.  Google Scholar

[7]

E. Foxall and H. Lyu, Clustering in the three and four color cyclic particle systems in one dimension, Journal of Statistical Physics, 171 (2018), 470-483.  doi: 10.1007/s10955-018-2004-2.  Google Scholar

[8]

M. E. Gilpin, Limit cycles in competition communities, The American Naturalist, 109 (1975), 51-60.   Google Scholar

[9]

T. G. Kurtz, Strong approximation theorems for density-dependent Markov chains, Stochastic Processes and their Applications, 6 (1978), 223-240.  doi: 10.1016/0304-4149(78)90020-0.  Google Scholar

[10]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM Journal on Applied Mathematics, 29 (1975), 243-253.  doi: 10.1137/0129022.  Google Scholar

[11]

M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations, Journal of Theoretical Biology, 264 (2010), 1-10.  doi: 10.1016/j.jtbi.2010.01.008.  Google Scholar

[12]

A. Szolnoki, M. Mobilia, L. L. Jiang, B. Szczesny, A. M. Rucklidge and M. Perc, Cyclic dominance in evolutionary games: A review, Journal of the Royal Society Interface, 11 (2014), 20140735. Google Scholar

[13]

A. Szolnoki and M. Perc, Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies, Physical Review X, 3 (2013), 041021. Google Scholar

[14]

A. Szolnoki, M. Perc and G. Szabó, Defense Mechanisms of Empathetic Players in the Spatial Ultimatum Game., Physical Review Letters, 109 (2012), 078701. Google Scholar

[15]

A. Szolnoki and M. Perc, Evolutionary dynamics of cooperation in neutral populations, New Journal of Physics, 20 (2018), 013031, 9pp. doi: 10.1088/1367-2630/aa9fd2.  Google Scholar

[16]

P. SchusterK. Sigmund and R. Wolff, On $\omega$-limits for competition between three species, SIAM Journal on Applied Mathematics, 37 (1979), 49-54.  doi: 10.1137/0137004.  Google Scholar

Figure 1.  Simulation output of $ u_0(t) $ from (1) for various $ m $, with initial data $ u(0) = (0.01,0.99/(m-1),\dots,0.99/(m-1)) $, chosen to be close to $ \partial S_m $
Figure 2.  Simulation output of (1) with initial data $ u(0) = (0,1/(m-1),\dots,1/(m-1)) $
[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[2]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[3]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[6]

Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068

[7]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[8]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[14]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[15]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[16]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[20]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (260)
  • Cited by (0)

Other articles
by authors

[Back to Top]