\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundary dynamics of the replicator equations for neutral models of cyclic dominance

The author is supported by an NSERC Discovery grant

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We study the replicator equations, also known as mean-field equations, for a simple model of cyclic dominance with any number $ m $ of strategies, generalizing the rock-paper-scissors model which corresponds to the case $ m = 3 $. Previously the dynamics were solved for $ m\in\{3,4\} $ by consideration of $ m-2 $ conserved quantities. Here we show that for any $ m $, the boundary of the phase space is partitioned into heteroclinic networks for which we give a precise description. A set of $ {\lfloor} m/2{\rfloor} $ conserved quantities plays an important role in the analysis. We also discuss connections to the well-mixed stochastic version of the model.

    Mathematics Subject Classification: Primary: 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Simulation output of $ u_0(t) $ from (1) for various $ m $, with initial data $ u(0) = (0.01,0.99/(m-1),\dots,0.99/(m-1)) $, chosen to be close to $ \partial S_m $

    Figure 2.  Simulation output of (1) with initial data $ u(0) = (0,1/(m-1),\dots,1/(m-1)) $

  • [1] H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen. De Gruyter Studies in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1990. doi: 10.1515/9783110853698.
    [2] M. Bramson and D. Griffeath, Flux and fixation in cyclic particle systems, The Annals of Probability, 17 (1989), 26-45.  doi: 10.1214/aop/1176991492.
    [3] M. Berr, T. Reichenbach, M. Schottenloher and E. Frey, Zero-one survival behavior of cyclically competing species, Physical Review Letters, 102 (2009), 048102.
    [4] S. O. Case, C. H. Durney, M. Pleimling and R. K. P. Zia, Cyclic competition of four species: Mean-field theory and stochastic evolution, Europhysics Letters, 92 (2011), 58003.
    [5] O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J Appl Dyn Sys, 8 (2009), 1160-1189.  doi: 10.1137/080722734.
    [6] H. I. Freedman and P. Waltman, Persistence in a model of three competitive populations, Mathematical Biosciences, 73 (1985), 89-101.  doi: 10.1016/0025-5564(85)90078-1.
    [7] E. Foxall and H. Lyu, Clustering in the three and four color cyclic particle systems in one dimension, Journal of Statistical Physics, 171 (2018), 470-483.  doi: 10.1007/s10955-018-2004-2.
    [8] M. E. Gilpin, Limit cycles in competition communities, The American Naturalist, 109 (1975), 51-60. 
    [9] T. G. Kurtz, Strong approximation theorems for density-dependent Markov chains, Stochastic Processes and their Applications, 6 (1978), 223-240.  doi: 10.1016/0304-4149(78)90020-0.
    [10] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM Journal on Applied Mathematics, 29 (1975), 243-253.  doi: 10.1137/0129022.
    [11] M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations, Journal of Theoretical Biology, 264 (2010), 1-10.  doi: 10.1016/j.jtbi.2010.01.008.
    [12] A. Szolnoki, M. Mobilia, L. L. Jiang, B. Szczesny, A. M. Rucklidge and M. Perc, Cyclic dominance in evolutionary games: A review, Journal of the Royal Society Interface, 11 (2014), 20140735.
    [13] A. Szolnoki and M. Perc, Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies, Physical Review X, 3 (2013), 041021.
    [14] A. Szolnoki, M. Perc and G. Szabó, Defense Mechanisms of Empathetic Players in the Spatial Ultimatum Game., Physical Review Letters, 109 (2012), 078701.
    [15] A. Szolnoki and M. Perc, Evolutionary dynamics of cooperation in neutral populations, New Journal of Physics, 20 (2018), 013031, 9pp. doi: 10.1088/1367-2630/aa9fd2.
    [16] P. SchusterK. Sigmund and R. Wolff, On $\omega$-limits for competition between three species, SIAM Journal on Applied Mathematics, 37 (1979), 49-54.  doi: 10.1137/0137004.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(609) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return