
-
Previous Article
Flocking of non-identical Cucker-Smale models on general coupling network
- DCDS-B Home
- This Issue
-
Next Article
Boundary dynamics of the replicator equations for neutral models of cyclic dominance
Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary
1. | School of Mathematics, Jilin University, Changchun, Jilin 130012, China |
2. | School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P. R. China |
3. | Department of Mathematics and Statistics, Auburn University, AL 36849, USA |
The current paper is to investigate the numerical approximation of logistic type chemotaxis models in one space dimension with a free boundary. Such a model with a free boundary describes the spreading of a new or invasive species subject to the influence of some chemical substances in an environment with a free boundary representing the spreading front (see Bao and Shen [
References:
[1] |
L. Bao and W. Shen,
Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1107-1130.
doi: 10.3934/dcds.2020072. |
[2] |
L. Bao and W. Shen, Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. II, Spreading-vanishing dichotomy in a domain with a free boundary, preprint. Google Scholar |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[4] |
C. C. Chiu and J. L. Yu,
An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems, Math. Biosci. Eng., 4 (2007), 187-203.
doi: 10.3934/mbe.2007.4.187. |
[5] |
J. I. Diaz and T. Nagai,
Symmetrization in a parabolic-elliptic system related to chemotaxis, Advances in Mathematical Science and Applications, 5 (1995), 659-680.
|
[6] |
J. I. Diaz, T. Nagai and J.-M. Rakotoson,
Symmetrization techniques on unbounded domains: Application to a chemotaxis system on $\mathbb{R}^N$, J. Differential Equations, 145 (1998), 156-183.
doi: 10.1006/jdeq.1997.3389. |
[7] |
Y.-H. Du and Z.-G. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[8] |
Y.-H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 32 (2015), 279–305.
doi: 10.1016/j.anihpc.2013.11.004. |
[9] |
E. Galakhov, O. Salieva and J. I. Tello,
On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.
doi: 10.1016/j.jde.2016.07.008. |
[10] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[11] |
T. B. Issa and W. Shen,
Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources, SIAM J. Appl. Dyn. Syst., 16 (2017), 926-973.
doi: 10.1137/16M1092428. |
[12] |
H. Jin and Z. A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[13] |
K. Kanga and A. Steven,
Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72.
doi: 10.1016/j.na.2016.01.017. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
E. F. Keller and L. A. Segel,
A Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[16] |
H. G. Landau,
Heat conduction in a melting solid, Quaterly of Applied Mathematics, 8 (1950), 81-94.
doi: 10.1090/qam/33441. |
[17] |
F. Li, X. Liang and W. Shen,
Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy, Discrete Contin. Dyn. Syst, 36 (2016), 3317-3338.
doi: 10.3934/dcds.2016.36.3317. |
[18] |
F. Li, X. Liang and W. Shen,
Diffusive KPP equations with free boundaries in time almost periodic environments: II. Spreading speeds and semi-wave solutions, J. Differential Equations, 261 (2016), 2403-2445.
doi: 10.1016/j.jde.2016.04.035. |
[19] |
R. H. Li, Z. Y. Chen and W. Wu, Generalized Difference Methods for Differential Equations- Numerical Analysis of Finite Volume Methods, Marcel Dekker, Inc, 2000. |
[20] |
X. J. Li, C. W. Shu and Y. Yang,
Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73 (2017), 943-967.
doi: 10.1007/s10915-016-0354-y. |
[21] |
J. G. Liu, L. Wang and Z. N. Zhou,
Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Math. Comp., 87 (2018), 1165-1189.
doi: 10.1090/mcom/3250. |
[22] |
S. Liu and X. F. Liu, Numerical methods for a wwo-species competition-diffusion model with free boundaries, Mathematics, 6 (2018), 72-96. Google Scholar |
[23] |
S. Liu, Y. H. Du and X. F. Liu,
Numerical studies of a class of reaction-diffusion equations with stefan conditions, International Journal of Computer Mathematics, 97 (2020), 959-979.
doi: 10.1080/00207160.2019.1599868. |
[24] |
J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, Invasion Ecology, Blackwell Publishing, 2007. Google Scholar |
[25] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003), 693-730.
doi: 10.1016/S0092-8240(03)00030-2. |
[26] |
M.-A. Piqueras, R. Company and L. L$\acute{o}$dar,
A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model, J. Comput. Appl. Math., 309 (2017), 473-481.
doi: 10.1016/j.cam.2016.02.029. |
[27] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40 (1997), 411-433.
|
[28] |
N. Saito and T. Suzuki,
Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72-90.
doi: 10.1016/j.amc.2005.01.037. |
[29] |
R. B. Salako and W. Shen,
Spreading Speeds and Traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 37 (2017), 6189-6225.
doi: 10.3934/dcds.2017268. |
[30] |
R. B. Salako, W. Shen and S. W. Xue,
Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic chemotaxis systems with logistic source?, J. Math. Biol., 79 (2019), 1455-1490.
doi: 10.1007/s00285-019-01400-0. |
[31] |
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford Univ. Press., Oxford, 1997. Google Scholar |
[32] |
Y. Sugiyama,
Global existence in sub-critical cases and finite time blow up in super critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.
|
[33] |
Y. Sugiyama and H. Kunii,
Global Existence and decay properties for a degenerate keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.
doi: 10.1016/j.jde.2006.03.003. |
[34] |
Y.-S. Tao and Z. A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[35] |
J. I. Tello and M. Winkler,
A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[36] |
L. Wang, C. Mu and P. Zheng,
On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.
doi: 10.1016/j.jde.2013.12.007. |
[37] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[38] |
M. Winkler,
Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis and Applications, 384 (2011), 261-272.
doi: 10.1016/j.jmaa.2011.05.057. |
[39] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[40] |
M. Winkler,
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023. |
[41] |
M. Winkler,
How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.
doi: 10.1007/s00332-014-9205-x. |
[42] |
T. Yokota and N. Yoshino,
Existence of solutions to chemotaxis dynamics with logistic source, Discrete Contin. Dyn. Syst. Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015 (2015), 1125-1133.
doi: 10.3934/proc.2015.1125. |
[43] |
P. Zheng, C. Mu, X. Hu and Y. Tian,
Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, Math. Anal. Appl., 424 (2015), 509-522.
doi: 10.1016/j.jmaa.2014.11.031. |
show all references
References:
[1] |
L. Bao and W. Shen,
Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1107-1130.
doi: 10.3934/dcds.2020072. |
[2] |
L. Bao and W. Shen, Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. II, Spreading-vanishing dichotomy in a domain with a free boundary, preprint. Google Scholar |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[4] |
C. C. Chiu and J. L. Yu,
An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems, Math. Biosci. Eng., 4 (2007), 187-203.
doi: 10.3934/mbe.2007.4.187. |
[5] |
J. I. Diaz and T. Nagai,
Symmetrization in a parabolic-elliptic system related to chemotaxis, Advances in Mathematical Science and Applications, 5 (1995), 659-680.
|
[6] |
J. I. Diaz, T. Nagai and J.-M. Rakotoson,
Symmetrization techniques on unbounded domains: Application to a chemotaxis system on $\mathbb{R}^N$, J. Differential Equations, 145 (1998), 156-183.
doi: 10.1006/jdeq.1997.3389. |
[7] |
Y.-H. Du and Z.-G. Lin,
Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.
doi: 10.1137/090771089. |
[8] |
Y.-H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 32 (2015), 279–305.
doi: 10.1016/j.anihpc.2013.11.004. |
[9] |
E. Galakhov, O. Salieva and J. I. Tello,
On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.
doi: 10.1016/j.jde.2016.07.008. |
[10] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[11] |
T. B. Issa and W. Shen,
Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources, SIAM J. Appl. Dyn. Syst., 16 (2017), 926-973.
doi: 10.1137/16M1092428. |
[12] |
H. Jin and Z. A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[13] |
K. Kanga and A. Steven,
Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72.
doi: 10.1016/j.na.2016.01.017. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
E. F. Keller and L. A. Segel,
A Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[16] |
H. G. Landau,
Heat conduction in a melting solid, Quaterly of Applied Mathematics, 8 (1950), 81-94.
doi: 10.1090/qam/33441. |
[17] |
F. Li, X. Liang and W. Shen,
Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy, Discrete Contin. Dyn. Syst, 36 (2016), 3317-3338.
doi: 10.3934/dcds.2016.36.3317. |
[18] |
F. Li, X. Liang and W. Shen,
Diffusive KPP equations with free boundaries in time almost periodic environments: II. Spreading speeds and semi-wave solutions, J. Differential Equations, 261 (2016), 2403-2445.
doi: 10.1016/j.jde.2016.04.035. |
[19] |
R. H. Li, Z. Y. Chen and W. Wu, Generalized Difference Methods for Differential Equations- Numerical Analysis of Finite Volume Methods, Marcel Dekker, Inc, 2000. |
[20] |
X. J. Li, C. W. Shu and Y. Yang,
Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73 (2017), 943-967.
doi: 10.1007/s10915-016-0354-y. |
[21] |
J. G. Liu, L. Wang and Z. N. Zhou,
Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Math. Comp., 87 (2018), 1165-1189.
doi: 10.1090/mcom/3250. |
[22] |
S. Liu and X. F. Liu, Numerical methods for a wwo-species competition-diffusion model with free boundaries, Mathematics, 6 (2018), 72-96. Google Scholar |
[23] |
S. Liu, Y. H. Du and X. F. Liu,
Numerical studies of a class of reaction-diffusion equations with stefan conditions, International Journal of Computer Mathematics, 97 (2020), 959-979.
doi: 10.1080/00207160.2019.1599868. |
[24] |
J. L. Lockwood, M. F. Hoopes and M. P. Marchetti, Invasion Ecology, Blackwell Publishing, 2007. Google Scholar |
[25] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner,
Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003), 693-730.
doi: 10.1016/S0092-8240(03)00030-2. |
[26] |
M.-A. Piqueras, R. Company and L. L$\acute{o}$dar,
A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model, J. Comput. Appl. Math., 309 (2017), 473-481.
doi: 10.1016/j.cam.2016.02.029. |
[27] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40 (1997), 411-433.
|
[28] |
N. Saito and T. Suzuki,
Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72-90.
doi: 10.1016/j.amc.2005.01.037. |
[29] |
R. B. Salako and W. Shen,
Spreading Speeds and Traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 37 (2017), 6189-6225.
doi: 10.3934/dcds.2017268. |
[30] |
R. B. Salako, W. Shen and S. W. Xue,
Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic chemotaxis systems with logistic source?, J. Math. Biol., 79 (2019), 1455-1490.
doi: 10.1007/s00285-019-01400-0. |
[31] |
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford Univ. Press., Oxford, 1997. Google Scholar |
[32] |
Y. Sugiyama,
Global existence in sub-critical cases and finite time blow up in super critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.
|
[33] |
Y. Sugiyama and H. Kunii,
Global Existence and decay properties for a degenerate keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.
doi: 10.1016/j.jde.2006.03.003. |
[34] |
Y.-S. Tao and Z. A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[35] |
J. I. Tello and M. Winkler,
A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[36] |
L. Wang, C. Mu and P. Zheng,
On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.
doi: 10.1016/j.jde.2013.12.007. |
[37] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[38] |
M. Winkler,
Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis and Applications, 384 (2011), 261-272.
doi: 10.1016/j.jmaa.2011.05.057. |
[39] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[40] |
M. Winkler,
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023. |
[41] |
M. Winkler,
How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.
doi: 10.1007/s00332-014-9205-x. |
[42] |
T. Yokota and N. Yoshino,
Existence of solutions to chemotaxis dynamics with logistic source, Discrete Contin. Dyn. Syst. Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015 (2015), 1125-1133.
doi: 10.3934/proc.2015.1125. |
[43] |
P. Zheng, C. Mu, X. Hu and Y. Tian,
Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, Math. Anal. Appl., 424 (2015), 509-522.
doi: 10.1016/j.jmaa.2014.11.031. |
























[1] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[2] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[3] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[4] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[5] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[6] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[7] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[8] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[9] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[10] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[11] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[12] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[13] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[14] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[15] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[16] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[17] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[18] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[19] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[20] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]