
-
Previous Article
Global analysis of a model of competition in the chemostat with internal inhibitor
- DCDS-B Home
- This Issue
-
Next Article
Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary
Flocking of non-identical Cucker-Smale models on general coupling network
1. | Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, ROC |
2. | Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 700, Taiwan, ROC |
The purpose of the paper is to investigate the flocking behavior of the discrete-time Cucker-Smale(C-S) model under general interaction network topologies with agents having their free-will accelerations. We prove theoretically that if the free-will accelerations of agents are summable, then, for any given initial conditions, the solution achieves flocking with a finite moving speed by suitably choosing the time step as well as the communication rate of the system or the strength of the interaction between agents. In particular, if the communication rate $ \beta $ of the system is subcritical, i.e., $ \beta $ is less than a critical value $ \beta_c $, then flocking holds for any initial conditions regardless of the strength of the interaction between agents. While, if the communication rate is critical ($ \beta = \beta_c $) or supercritical ($ \beta > \beta_c $), then flocking can only be achieved by making the strength of the interaction large enough. We also present some numerical simulations to support our obtained theoretical results.
References:
[1] |
S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee,
On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10. |
[3] |
S. M. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim,
Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods in Appli. Sci., 23 (2013), 1603-1628.
doi: 10.1142/S0218202513500176. |
[4] |
P. Antoniou, A. Pitsillides, T. Blackwell and A. Engelbrecht, Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks, IEEE Congr. Evol. Comp., (2009), 1753–1761.
doi: 10.1109/CEC.2009.4983153. |
[5] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[6] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[7] |
F. Cucker and J.-G. Dong,
On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.
doi: 10.1142/S0218202509003851. |
[8] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[9] |
F. Cucker and J.-G. Dong,
A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.
doi: 10.1109/TAC.2011.2107113. |
[10] |
F. Cucker and J.-G. Dong,
On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.
doi: 10.1142/S0218202516500639. |
[11] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[12] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[13] |
F. Cucker and J.-G. Dong,
On flocks under switching directed interaction topologies, SIAM J. Math. Anal., 79 (2019), 95-110.
doi: 10.1137/18M116976X. |
[14] |
P. Degond and S. Motsch,
Macroscopic limit of self-driven particles with orientation interaction, C. R. Math. Acad. Sci. Paris, 345 (2007), 555-560.
doi: 10.1016/j.crma.2007.10.024. |
[15] |
P. Degond and S. Motsch,
Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[16] |
P. Degond and S. Motsch,
Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.
doi: 10.1007/s10955-008-9529-8. |
[17] |
P. Degond and T. Yang,
Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20 (2010), 1459-1490.
doi: 10.1142/S0218202510004659. |
[18] |
J.-G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[19] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[20] |
S.-Y. Ha, Z. Li, M. Slemrod and X. Xue,
Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.
doi: 10.1090/S0033-569X-2014-01350-5. |
[21] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Mod., 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[22] |
S.-Y. Ha, Q. Xiao and X. Zhang,
Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids, J. Diff. Eq., 264 (2018), 4669-4706.
doi: 10.1016/j.jde.2017.12.020. |
[23] |
J. Juang and Y.-H. Liang,
Avoiding collisions in Cucker-Smale flocking models under group-hierarchical multi-leadership, SIAM J. Appl. Math., 78 (2018), 531-550.
doi: 10.1137/16M1098401. |
[24] |
Z. Li and S.-Y. Ha,
On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.
doi: 10.1090/qam/1401. |
[25] |
Z. Li, S.-Y. Ha and and X. Xue,
Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419.
doi: 10.1142/S0218202514500043. |
[26] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[27] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with free-will agent, Physica A, 410 (2014), 205-217.
doi: 10.1016/j.physa.2014.05.008. |
[28] |
C.-H. Li and S.-Y. Yang,
A new discrete Cucker-Smale flocking model under hierarchical leadership, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2587-2599.
doi: 10.3934/dcdsb.2016062. |
[29] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[30] |
J. Park, H. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[31] |
L. Perea, P. Elosegui and G. Gómez,
Extension of the Cucker-Smale control law to space flight formations, J. Guid., Control, and Dyn., 32 (2009), 527-537.
doi: 10.2514/1.36269. |
[32] |
B. Piccoli, F. Rossi and E. Trélat,
Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.
doi: 10.1137/140996501. |
[33] |
Z. Qu, Cooperative Control Of Dynamical Systems, Springer-Verlag London, 2009.
doi: 10.1007/978-1-84882-325-9. |
[34] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719.
doi: 10.1137/060673254. |
[35] |
J. Toner and Y. Tu,
Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.
doi: 10.1103/PhysRevE.58.4828. |
[36] |
C. M. Topaz and A. L. Bertozzi,
Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.
doi: 10.1137/S0036139903437424. |
[37] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[38] |
T. Vicsek and A. Zafeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[39] |
C.-W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, Singapore: World Scientific, 2007, 88–89.
doi: 10.1142/6570. |
show all references
References:
[1] |
S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
S. M. Ahn, H. Choi, S.-Y. Ha and H. Lee,
On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10. |
[3] |
S. M. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim,
Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods in Appli. Sci., 23 (2013), 1603-1628.
doi: 10.1142/S0218202513500176. |
[4] |
P. Antoniou, A. Pitsillides, T. Blackwell and A. Engelbrecht, Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks, IEEE Congr. Evol. Comp., (2009), 1753–1761.
doi: 10.1109/CEC.2009.4983153. |
[5] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[6] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[7] |
F. Cucker and J.-G. Dong,
On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404.
doi: 10.1142/S0218202509003851. |
[8] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[9] |
F. Cucker and J.-G. Dong,
A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.
doi: 10.1109/TAC.2011.2107113. |
[10] |
F. Cucker and J.-G. Dong,
On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.
doi: 10.1142/S0218202516500639. |
[11] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[12] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[13] |
F. Cucker and J.-G. Dong,
On flocks under switching directed interaction topologies, SIAM J. Math. Anal., 79 (2019), 95-110.
doi: 10.1137/18M116976X. |
[14] |
P. Degond and S. Motsch,
Macroscopic limit of self-driven particles with orientation interaction, C. R. Math. Acad. Sci. Paris, 345 (2007), 555-560.
doi: 10.1016/j.crma.2007.10.024. |
[15] |
P. Degond and S. Motsch,
Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[16] |
P. Degond and S. Motsch,
Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.
doi: 10.1007/s10955-008-9529-8. |
[17] |
P. Degond and T. Yang,
Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20 (2010), 1459-1490.
doi: 10.1142/S0218202510004659. |
[18] |
J.-G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[19] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[20] |
S.-Y. Ha, Z. Li, M. Slemrod and X. Xue,
Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.
doi: 10.1090/S0033-569X-2014-01350-5. |
[21] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Mod., 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[22] |
S.-Y. Ha, Q. Xiao and X. Zhang,
Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids, J. Diff. Eq., 264 (2018), 4669-4706.
doi: 10.1016/j.jde.2017.12.020. |
[23] |
J. Juang and Y.-H. Liang,
Avoiding collisions in Cucker-Smale flocking models under group-hierarchical multi-leadership, SIAM J. Appl. Math., 78 (2018), 531-550.
doi: 10.1137/16M1098401. |
[24] |
Z. Li and S.-Y. Ha,
On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.
doi: 10.1090/qam/1401. |
[25] |
Z. Li, S.-Y. Ha and and X. Xue,
Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership, Math. Models Methods Appl. Sci., 24 (2014), 1389-1419.
doi: 10.1142/S0218202514500043. |
[26] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[27] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with free-will agent, Physica A, 410 (2014), 205-217.
doi: 10.1016/j.physa.2014.05.008. |
[28] |
C.-H. Li and S.-Y. Yang,
A new discrete Cucker-Smale flocking model under hierarchical leadership, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2587-2599.
doi: 10.3934/dcdsb.2016062. |
[29] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[30] |
J. Park, H. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[31] |
L. Perea, P. Elosegui and G. Gómez,
Extension of the Cucker-Smale control law to space flight formations, J. Guid., Control, and Dyn., 32 (2009), 527-537.
doi: 10.2514/1.36269. |
[32] |
B. Piccoli, F. Rossi and E. Trélat,
Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.
doi: 10.1137/140996501. |
[33] |
Z. Qu, Cooperative Control Of Dynamical Systems, Springer-Verlag London, 2009.
doi: 10.1007/978-1-84882-325-9. |
[34] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719.
doi: 10.1137/060673254. |
[35] |
J. Toner and Y. Tu,
Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.
doi: 10.1103/PhysRevE.58.4828. |
[36] |
C. M. Topaz and A. L. Bertozzi,
Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.
doi: 10.1137/S0036139903437424. |
[37] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[38] |
T. Vicsek and A. Zafeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[39] |
C.-W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, Singapore: World Scientific, 2007, 88–89.
doi: 10.1142/6570. |






[1] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[2] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[3] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[4] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[5] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[6] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[7] |
Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363 |
[8] |
Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021013 |
[9] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[10] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[11] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[12] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[13] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[14] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[15] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[16] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[17] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[18] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[19] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[20] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]