
-
Previous Article
Global dynamics in a tumor-immune model with an immune checkpoint inhibitor
- DCDS-B Home
- This Issue
-
Next Article
Flocking of non-identical Cucker-Smale models on general coupling network
Global analysis of a model of competition in the chemostat with internal inhibitor
a. | TAG_SUP Université Ibn Khaldoun, Tiaret 14000, Algérie |
b. | TAG_SUP Ecole Normale Supérieure, Mostaganem 27000, Algérie |
c. | TAG_SUP Université Djillali Liabès, LDM, Sidi Bel Abbès 22000, Algérie |
A model of two microbial species in a chemostat competing for a single resource in the presence of an internal inhibitor is considered. The model is a four-dimensional system of ordinary differential equations. Using general growth rate functions of the species, we give a complete analysis for the existence and local stability of all steady states. We describe the behavior of the system with respect to the operating parameters represented by the dilution rate and the input concentrations of the substrate. The operating diagram has the operating parameters as its coordinates and the various regions defined in it correspond to qualitatively different asymptotic behavior: washout, competitive exclusion of one species, coexistence of the species, bistability, multiplicity of positive steady states. This bifurcation diagram which determines the effect of the operating parameters, is very useful to understand the model from both the mathematical and biological points of view, and is often constructed in the mathematical and biological literature.
References:
[1] |
N. Abdellatif, R. Fekih-Salem and T. Sari,
Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.
doi: 10.3934/mbe.2016012. |
[2] |
B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete and Continuous Dynamical Systems–B, in press. Google Scholar |
[3] |
J. P. Braselton and P. Waltman,
A competition model with dynamically allocated inhibitor production, Mathematical Biosciences, 173 (2001), 55-84.
doi: 10.1016/S0025-5564(01)00078-5. |
[4] |
G. J. Butler and G. S. K. Wolkowicz,
A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.
doi: 10.1137/0145006. |
[5] |
M. J. De Freitas and A. G. Fredrickson,
Inhibition as a factor in the maintenance of the diversity of microbial ecosystems, Journal of General Microbiology, 106 (1978), 307-320.
doi: 10.1099/00221287-106-2-307. |
[6] |
M. Dellal, M. Lakrib and T. Sari,
The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004. |
[7] |
P. De Leenheer, B. Li and H. L. Smith,
Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248.
|
[8] |
H. Fgaier, M. Kalmokoff, T. Ells and H. J. Eberl,
An allelopathy based model for the Listeria overgrowth phenomenon, Mathematical Biosciences, 247 (2014), 13-26.
doi: 10.1016/j.mbs.2013.10.008. |
[9] |
S. R. Hansen and S. P. Hubbell,
Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274. |
[10] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[11] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Wiley-ISTE, 2017. |
[12] |
P. A. Hoskisson and G. Hobbs,
Continuous culture - making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0. |
[13] |
S. B. Hsu,
Limiting behaviour for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.
doi: 10.1137/0134064. |
[14] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
A mathematical model for single nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030. |
[15] |
S. B. Hsu, Y. S. Li and P. Waltman,
Competition in the Presence of a Lethal External Inhibitor, Mathematical Biosciences, 167 (2000), 177-199.
doi: 10.1016/S0025-5564(00)00030-4. |
[16] |
S. B. Hsu and P. Waltman,
Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM Journal on Applied Mathematics, 52 (1992), 528-540.
doi: 10.1137/0152029. |
[17] |
S. B. Hsu and P. Waltman,
Competition in the chemostat when one competitor produces a toxin, Japan Journal of Industrial and Applied Mathematics, 15 (1998), 471-490.
doi: 10.1007/BF03167323. |
[18] |
S. B. Hsu and P. Waltman,
A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.
doi: 10.1016/j.mbs.2003.07.004. |
[19] |
R. E. Lenski and S. Hattingh,
Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.
doi: 10.1016/S0022-5193(86)80226-0. |
[20] |
B. Li,
Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.
doi: 10.1137/S003613999631100X. |
[21] |
J. Monod, La technique de culture continue. Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204.
doi: 10.1016/B978-0-12-460482-7.50023-3. |
[22] |
J. Monod, Recherches Sur la Croissance Des Cultures Bacteriennes, Hermann, Paris, 1958. Google Scholar |
[23] |
S. Pavlou,
Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.
doi: 10.1016/S0168-1656(99)00011-5. |
[24] |
T. Sari,
Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.
doi: 10.1007/s10440-012-9761-8. |
[25] |
T. Sari and F. Mazenc,
Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.
doi: 10.3934/mbe.2011.8.827. |
[26] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[27] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[28] |
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry,
Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002. |
[29] |
M. Weedermann,
Analysis of a model for the effects of an external toxin on anaerobic digestion, Mathematical Biosciences and Engineering, 9 (2012), 445-459.
doi: 10.3934/mbe.2012.9.445. |
[30] |
G. S. K. Wolkowicz and Z. Lu,
Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.
doi: 10.1137/0152012. |
show all references
References:
[1] |
N. Abdellatif, R. Fekih-Salem and T. Sari,
Competition for a single resource and coexistence of several species in the chemostat, Mathematical Biosciences and Engineering, 13 (2016), 631-652.
doi: 10.3934/mbe.2016012. |
[2] |
B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete and Continuous Dynamical Systems–B, in press. Google Scholar |
[3] |
J. P. Braselton and P. Waltman,
A competition model with dynamically allocated inhibitor production, Mathematical Biosciences, 173 (2001), 55-84.
doi: 10.1016/S0025-5564(01)00078-5. |
[4] |
G. J. Butler and G. S. K. Wolkowicz,
A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM Journal on Applied Mathematics, 45 (1985), 138-151.
doi: 10.1137/0145006. |
[5] |
M. J. De Freitas and A. G. Fredrickson,
Inhibition as a factor in the maintenance of the diversity of microbial ecosystems, Journal of General Microbiology, 106 (1978), 307-320.
doi: 10.1099/00221287-106-2-307. |
[6] |
M. Dellal, M. Lakrib and T. Sari,
The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Mathematical Biosciences, 302 (2018), 27-45.
doi: 10.1016/j.mbs.2018.05.004. |
[7] |
P. De Leenheer, B. Li and H. L. Smith,
Competition in the chemostat: Some remarks, Canadian Applied Mathematics Quarterly, 11 (2003), 229-248.
|
[8] |
H. Fgaier, M. Kalmokoff, T. Ells and H. J. Eberl,
An allelopathy based model for the Listeria overgrowth phenomenon, Mathematical Biosciences, 247 (2014), 13-26.
doi: 10.1016/j.mbs.2013.10.008. |
[9] |
S. R. Hansen and S. P. Hubbell,
Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes, Science, 207 (1980), 1491-1493.
doi: 10.1126/science.6767274. |
[10] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[11] |
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, Wiley-ISTE, 2017. |
[12] |
P. A. Hoskisson and G. Hobbs,
Continuous culture - making a comeback?, Microbiology, 151 (2005), 3153-3159.
doi: 10.1099/mic.0.27924-0. |
[13] |
S. B. Hsu,
Limiting behaviour for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.
doi: 10.1137/0134064. |
[14] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
A mathematical model for single nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030. |
[15] |
S. B. Hsu, Y. S. Li and P. Waltman,
Competition in the Presence of a Lethal External Inhibitor, Mathematical Biosciences, 167 (2000), 177-199.
doi: 10.1016/S0025-5564(00)00030-4. |
[16] |
S. B. Hsu and P. Waltman,
Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM Journal on Applied Mathematics, 52 (1992), 528-540.
doi: 10.1137/0152029. |
[17] |
S. B. Hsu and P. Waltman,
Competition in the chemostat when one competitor produces a toxin, Japan Journal of Industrial and Applied Mathematics, 15 (1998), 471-490.
doi: 10.1007/BF03167323. |
[18] |
S. B. Hsu and P. Waltman,
A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.
doi: 10.1016/j.mbs.2003.07.004. |
[19] |
R. E. Lenski and S. Hattingh,
Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, Journal of Theoretical Biology, 122 (1986), 83-93.
doi: 10.1016/S0022-5193(86)80226-0. |
[20] |
B. Li,
Global asymptotic behavior of the chemostat: General response functions and different removal rates, SIAM Journal on Applied Mathematics, 59 (1998), 411-422.
doi: 10.1137/S003613999631100X. |
[21] |
J. Monod, La technique de culture continue. Théorie et applications, Selected Papers in Molecular Biology by Jacques Monod, (1978), 184–204.
doi: 10.1016/B978-0-12-460482-7.50023-3. |
[22] |
J. Monod, Recherches Sur la Croissance Des Cultures Bacteriennes, Hermann, Paris, 1958. Google Scholar |
[23] |
S. Pavlou,
Computing operating diagrams of bioreactors, Journal of Biotechnology, 71 (1999), 7-16.
doi: 10.1016/S0168-1656(99)00011-5. |
[24] |
T. Sari,
Competitive exclusion for chemostat equations with variable yields, Acta Applicandae Mathematicae, 123 (2013), 201-219.
doi: 10.1007/s10440-012-9761-8. |
[25] |
T. Sari and F. Mazenc,
Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, 8 (2011), 827-840.
doi: 10.3934/mbe.2011.8.827. |
[26] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[27] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[28] |
M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi and C. Lobry,
Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, 321 (2016), 64-74.
doi: 10.1016/j.ecolmodel.2015.11.002. |
[29] |
M. Weedermann,
Analysis of a model for the effects of an external toxin on anaerobic digestion, Mathematical Biosciences and Engineering, 9 (2012), 445-459.
doi: 10.3934/mbe.2012.9.445. |
[30] |
G. S. K. Wolkowicz and Z. Lu,
Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates, SIAM Journal on Applied Mathematics, 52 (1992), 222-233.
doi: 10.1137/0152012. |







Equilibria | Existence | Local exponential stability |
Always | ||
(23) has a solution |
Equilibria | Existence | Local exponential stability |
Always | ||
(23) has a solution |
Parameters | Figures | ||||||||
Units | |||||||||
Case (a) | 1.0 | 2.0 | 0.01 | 0.04 | 0.01 | 0.006 | 0.1 | 4.0 | 5(a) |
Case (b) | 1.0 | 2.0 | 0.01 | 0.04 | 0.01 | 0.006 | 4.0 | 0.1 | 5(b) |
Case (c) | 2.0 | 9.0 | 0.006 | 0.04 | 0.005 | 0.001 | 0.005 | 0.4 | 6(a), 7 |
Case (d) | 2.0 | 9.0 | 0.006 | 0.04 | 0.005 | 0.001 | 0.4 | 0.005 | 6(b) |
Parameters | Figures | ||||||||
Units | |||||||||
Case (a) | 1.0 | 2.0 | 0.01 | 0.04 | 0.01 | 0.006 | 0.1 | 4.0 | 5(a) |
Case (b) | 1.0 | 2.0 | 0.01 | 0.04 | 0.01 | 0.006 | 4.0 | 0.1 | 5(b) |
Case (c) | 2.0 | 9.0 | 0.006 | 0.04 | 0.005 | 0.001 | 0.005 | 0.4 | 6(a), 7 |
Case (d) | 2.0 | 9.0 | 0.006 | 0.04 | 0.005 | 0.001 | 0.4 | 0.005 | 6(b) |
Region | The relative positions of |
|||||
S | ||||||
U | S | |||||
U | U | S | ||||
U | S | U | ||||
U | S | |||||
U | U | U | S | |||
U | S | S | U | |||
**When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist. |
Region | The relative positions of |
|||||
S | ||||||
U | S | |||||
U | U | S | ||||
U | S | U | ||||
U | S | |||||
U | U | U | S | |||
U | S | S | U | |||
**When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist. |
Region | The relative positions of |
|||||
S | ||||||
U | S | |||||
U | U | S | ||||
U | S | U | ||||
U | S | |||||
U | U | U | S | |||
U | S | S | U | |||
U | U | S | S | U | ||
U | U | U | S | |||
U | S | S | U | |||
U | U | S | U | S | ||
**When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist. |
Region | The relative positions of |
|||||
S | ||||||
U | S | |||||
U | U | S | ||||
U | S | U | ||||
U | S | |||||
U | U | U | S | |||
U | S | S | U | |||
U | U | S | S | U | ||
U | U | U | S | |||
U | S | S | U | |||
U | U | S | U | S | ||
**When Sc1 and Sc2 do not exist, the condition reduces to Si, i = 1, 2 exist. |
Regions | Figures | |||||
0.006 | 0.085 | 0.005 | 0.064 | 7(a) | ||
0.009 | 0.042 | 0.012 | 0.025 | 7(b) | ||
0.008 | 0.017 | 0.012 | 0.025 | 7(c) |
Regions | Figures | |||||
0.006 | 0.085 | 0.005 | 0.064 | 7(a) | ||
0.009 | 0.042 | 0.012 | 0.025 | 7(b) | ||
0.008 | 0.017 | 0.012 | 0.025 | 7(c) |
[1] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[2] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[3] |
Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 |
[4] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[5] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[6] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020359 |
[7] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[8] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[9] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[10] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[11] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[12] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[13] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[14] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[15] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[16] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[17] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[18] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[19] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[20] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]