# American Institute of Mathematical Sciences

February  2021, 26(2): 1129-1148. doi: 10.3934/dcdsb.2020156

## Global analysis of a model of competition in the chemostat with internal inhibitor

 a. TAG_SUP Université Ibn Khaldoun, Tiaret 14000, Algérie b. TAG_SUP Ecole Normale Supérieure, Mostaganem 27000, Algérie c. TAG_SUP Université Djillali Liabès, LDM, Sidi Bel Abbès 22000, Algérie

* Corresponding author: Mohamed Dellal

Received  August 2019 Revised  January 2020 Published  May 2020

Fund Project: The authors are supported by the "Directorate General for Scientific Research and Technological Development, Ministry of Higher Education and Scientific Research, Algeria" and the Euro-Mediterranean research network TREASURE (http://www.inra.fr/treasure)

A model of two microbial species in a chemostat competing for a single resource in the presence of an internal inhibitor is considered. The model is a four-dimensional system of ordinary differential equations. Using general growth rate functions of the species, we give a complete analysis for the existence and local stability of all steady states. We describe the behavior of the system with respect to the operating parameters represented by the dilution rate and the input concentrations of the substrate. The operating diagram has the operating parameters as its coordinates and the various regions defined in it correspond to qualitatively different asymptotic behavior: washout, competitive exclusion of one species, coexistence of the species, bistability, multiplicity of positive steady states. This bifurcation diagram which determines the effect of the operating parameters, is very useful to understand the model from both the mathematical and biological points of view, and is often constructed in the mathematical and biological literature.

Citation: Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156
##### References:

show all references

##### References:
Projection of equilibria $E_0$, $E_1$, $E_2$ and $E_c$ in the plane $(S,p)$ and existence and stability conditions of these points. Where stable equilibrium points are denoted by filled circles and unstable equilibrium points are denoted by empty circles
The existence of multiple positive equilibria when the condition (20) $\rm(a)$: is not satisfied; $\rm(b)$: is satisfied
Case $n = 3$: Local stability of $E_1$, $E_2$, $E_c^2$ and instability of $E_c^1$, $E_c^2$, $E_0$
The operating diagram of the system (1) where $\mu_i$ are given by (2) and the curves $\Gamma_i^c$ do not intersect. $\rm(a)$: The occurrence of the bistability region $\mathcal{J}_7$, where the coexistence region $\mathcal{J}_6$ does not exist. $\rm(b)$: The occurrence of the coexistence region $\mathcal{J}_6$. The biological parameters used to construct Figs. Figs. 5(a, b) are exactly the same except that the values of $\alpha_i$ have been inverted
The operating diagram of the system (1) where $\mu_i$ are given by (2) and the curves $\Gamma_i^c$ intersect. The pictures show the occurrence of the bistability region $\mathcal{J}_8$ of $E_2$ and $E_c^i$, The biological parameters used to construct Figs. Figs. 6(a, b) are exactly the same except that the values of $\alpha_i$ have been inverted
Illustrative graph of $\Gamma_i^c$, $i = 1,2$ defined by (33), showing the relative positions of the roots $S_c^1(\!D\!)$ and $S_c^2(\!D\!)$ of (39) with respect to the root $S_i(\!D\!,\!S^0\!)$ of (38). Region Ⅰ: $S_i<S_c^1<S_c^2$; region Ⅱ: $S_c^1<S_c^2<S_i$; region Ⅲ : $S_c^1<S_i<S_c^2$
The trajectories of the reduced model (28) where $(S^0,D)$ are chosen in regions of Fig. 6(a). (a): Bistability of $E_1$ and $E_2$ when $(S^0,D) = (0.1,0.9)\in\mathcal{J}_7^a$. (b): Bistability of $E_c^1$ and $E_2$ when $(S^0,D) = (0.05,1.15)\in\mathcal{J}_8^a$. (c): Global stability of $E_c^1$ when $(S^0,D) = (0.02,1.15)\in\mathcal{J}_6^a$
Existence and local asymptotic stability of equilibria of system (1)
 Equilibria Existence Local exponential stability $E_0$ Always $\lambda_1>S^0$ and $\lambda_2>S^0$ $E_1$ $\lambda_1F_2(S_1)$ $E_2$ $\lambda_2F_1(S_2)$ $E_{c}$ (23) has a solution $(\alpha_1\gamma_1-\alpha_2\gamma_2)[F'_2(S_c)-F'_1(S_c)]>0$
 Equilibria Existence Local exponential stability $E_0$ Always $\lambda_1>S^0$ and $\lambda_2>S^0$ $E_1$ $\lambda_1F_2(S_1)$ $E_2$ $\lambda_2F_1(S_2)$ $E_{c}$ (23) has a solution $(\alpha_1\gamma_1-\alpha_2\gamma_2)[F'_2(S_c)-F'_1(S_c)]>0$
Parameter values used in Section 5 where $\mu_i$ are given by (2)
 Parameters $m_1$ $m_2$ $a_1$ $a_2$ $K_1$ $K_2$ $\alpha_1$ $\alpha_2$ Figures Units $h^{-1}$ $h^{-1}$ $gl^{-1}$ $gl^{-1}$ $gl^{-1}$ $gl^{-1}$ Case (a) 1.0 2.0 0.01 0.04 0.01 0.006 0.1 4.0 5(a) Case (b) 1.0 2.0 0.01 0.04 0.01 0.006 4.0 0.1 5(b) Case (c) 2.0 9.0 0.006 0.04 0.005 0.001 0.005 0.4 6(a), 7 Case (d) 2.0 9.0 0.006 0.04 0.005 0.001 0.4 0.005 6(b)
 Parameters $m_1$ $m_2$ $a_1$ $a_2$ $K_1$ $K_2$ $\alpha_1$ $\alpha_2$ Figures Units $h^{-1}$ $h^{-1}$ $gl^{-1}$ $gl^{-1}$ $gl^{-1}$ $gl^{-1}$ Case (a) 1.0 2.0 0.01 0.04 0.01 0.006 0.1 4.0 5(a) Case (b) 1.0 2.0 0.01 0.04 0.01 0.006 4.0 0.1 5(b) Case (c) 2.0 9.0 0.006 0.04 0.005 0.001 0.005 0.4 6(a), 7 Case (d) 2.0 9.0 0.006 0.04 0.005 0.001 0.4 0.005 6(b)
Existence and stability of equilibria in the regions of the operating diagrams of Fig. 5, when the curves $\Gamma_i^c$ do not intersect. The letter S (resp. U) means stable (resp. unstable) and empty if that equilibrium does not exist
 Region The relative positions of $S_i$ and $S_c^i$ $E_0$ $E_1$ $E_2$ $E_{c}^1$ $E_{c}^2$ $(S^0,D)\in\mathcal J_1$ $S_1$ and $S_2$ do not exist S $(S^0,D)\in\mathcal J_2$ $S_1$ does not exist U S $(S^0,D)\in\mathcal J_3$ $S_c^1  Region The relative positions of$ S_i $and$ S_c^i  E_0  E_1  E_2  E_{c}^1  E_{c}^2  (S^0,D)\in\mathcal J_1  S_1 $and$ S_2 $do not exist S$ (S^0,D)\in\mathcal J_2  S_1 $does not exist U S$ (S^0,D)\in\mathcal J_3  S_c^1
Existence and stability of equilibria in the regions of the operating diagrams of Fig. 6, when the curves $\Gamma_i^c$ intersect
 Region The relative positions of $S_i$ and $S_c^i$ $E_0$ $E_1$ $E_2$ $E_{c}^1$ $E_{c}^2$ $(S^0,D)\in\mathcal J_1$ $S_1$ and $S_2$ do not exist S $(S^0,D)\in\mathcal J_2$ $S_1$ does not exist U S $(S^0,D)\in\mathcal J_3$ $S_i  Region The relative positions of$ S_i $and$ S_c^i  E_0  E_1  E_2  E_{c}^1  E_{c}^2  (S^0,D)\in\mathcal J_1  S_1 $and$ S_2 $do not exist S$ (S^0,D)\in\mathcal J_2  S_1 $does not exist U S$ (S^0,D)\in\mathcal J_3  S_i
Parameter values of $S_i$ and $S_c^i$ used in Fig.7
 $(S^0,D)$ Regions $S_1$ $S_2$ $S_c^1$ $S_c^2$ Figures $(0.1,0.9)$ $\mathcal{J}_7^a$ 0.006 0.085 0.005 0.064 7(a) $(0.05,1.15)$ $\mathcal{J}_8^a$ 0.009 0.042 0.012 0.025 7(b) $(0.02,1.15)$ $\mathcal{J}_6^a$ 0.008 0.017 0.012 0.025 7(c)
 $(S^0,D)$ Regions $S_1$ $S_2$ $S_c^1$ $S_c^2$ Figures $(0.1,0.9)$ $\mathcal{J}_7^a$ 0.006 0.085 0.005 0.064 7(a) $(0.05,1.15)$ $\mathcal{J}_8^a$ 0.009 0.042 0.012 0.025 7(b) $(0.02,1.15)$ $\mathcal{J}_6^a$ 0.008 0.017 0.012 0.025 7(c)
 [1] Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 [2] Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 [3] Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 [4] Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369 [5] Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 [6] Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359 [7] Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014 [8] Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 [9] Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015 [10] Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 [11] Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 [12] Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 [13] Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 [14] Sebastian J. Schreiber. The $P^*$ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 [15] Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013 [16] Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006 [17] Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 [18] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [19] Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450 [20] Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables