A recent paper [Y.-Y. Chen, J.-S. Guo, F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359] presented a discrete diffusive Kermack-McKendrick epidemic model, and the authors proved the existence of traveling wave solutions connecting the disease-free equilibrium to the endemic equilibrium. However, the boundary asymptotic behavior of the traveling waves converge to the endemic equilibrium at $ +\infty $ is still an open problem. In this paper, we investigate the above open problem and completely solve it by constructing suitable Lyapunov functional and employing Lebesgue dominated convergence theorem.
Citation: |
[1] |
P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189.![]() ![]() ![]() |
[2] |
M. Brucal-Hallare and E. V. Vleck, Traveling wavefronts in an antidiffusion lattice Nagumo model, SIAM J. Appl. Dyn. Syst., 10 (2011), 921-959.
doi: 10.1137/100819461.![]() ![]() ![]() |
[3] |
Y.-Y. Chen, J.-S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.
doi: 10.1088/1361-6544/aa6b0a.![]() ![]() ![]() |
[4] |
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012.![]() ![]() ![]() |
[5] |
T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244.
doi: 10.1016/0167-2789(93)90208-I.![]() ![]() ![]() |
[6] |
J. Fang, J. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466 (2010), 1919-1934.
doi: 10.1098/rspa.2009.0577.![]() ![]() ![]() |
[7] |
R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
doi: 10.1007/BF01192578.![]() ![]() ![]() |
[8] |
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.
doi: 10.1016/S0893-9659(02)00069-1.![]() ![]() ![]() |
[9] |
Y. Li, W.-T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001-1022.
doi: 10.3934/cpaa.2015.14.1001.![]() ![]() ![]() |
[10] |
Y. Li, W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.
doi: 10.1016/j.amc.2014.09.072.![]() ![]() ![]() |
[11] |
X.-F. San and Z.-C. Wang, Traveling waves for a two-group epidemic model with latent period in a patchy environment, J. Math. Anal. Appl., 475 (2019), 1502-1531.
doi: 10.1016/j.jmaa.2019.03.029.![]() ![]() ![]() |
[12] |
Z. Yang and G. Zhang, Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity, Sci. China Math., 61 (2018), 1789-1806.
doi: 10.1007/s11425-017-9175-2.![]() ![]() ![]() |
[13] |
L. Zhao, Z.-C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.
doi: 10.1007/s00285-018-1227-9.![]() ![]() ![]() |
[14] |
R. Zhang and S. Liu, Traveling waves for SVIR epidemic model with nonlocal dispersal, Math. Biosci. Eng., 16 (2019), 1654-1682.
doi: 10.3934/mbe.2019079.![]() ![]() ![]() |
[15] |
T. Zhang, W. Wang and K. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.
doi: 10.1016/j.jde.2015.10.017.![]() ![]() ![]() |
The monotonicity of function