February  2021, 26(2): 1205-1221. doi: 10.3934/dcdsb.2020160

Forced oscillation of viscous Burgers' equation with a time-periodic force

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

* Corresponding author: Taige Wang

Received  December 2019 Published  May 2020

This paper is concerned about the existence of periodic solutions of the viscous Burgers' equation when a forced oscillation is prescribed. We establish the existence theory by contraction mapping in $ H^s[0,1] $ with $ s\ge 0 $. Asymptotical periodicity is obtained as well, and the periodic solution is achieved by selecting a suitable function as initial data to generate a solution and passing time limit to infinity. Moreover, uniqueness and global stability is achieved for this periodic solution.

Citation: Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160
References:
[1]

J. BonaS. Sun and B. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. BonaS. Sun and B. Zhang, Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane, Comm. Cont. Math., 5 (2003), 369-400.  doi: 10.1142/S021919970300104X.  Google Scholar

[3]

J. BonaS. Sun and B. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. PDE, 28 (2003), 1391-1436.  doi: 10.1081/PDE-120024373.  Google Scholar

[4]

H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1993), 409-426.  doi: 10.1090/S0273-0979-1983-15105-4.  Google Scholar

[5]

H. Brézis and L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.  doi: 10.1002/cpa.3160310102.  Google Scholar

[6]

S. ChenC. HsiaC. Jung and B. Kwon, Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation, J. Math. Anal. Appl., 445 (2017), 655-676.  doi: 10.1016/j.jmaa.2016.08.018.  Google Scholar

[7]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[8]

J. M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Diff. Equs., 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[9] R. Grimshaw, Nonlinear Ordinary Differential Equations, Applied Mathematics and Engineering Science Texts. CRC Press, Boca Raton, FL, 1993.   Google Scholar
[10]

J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure Appl. Math., 19 (1966), 371-420.  doi: 10.1002/cpa.3160190404.  Google Scholar

[11]

G. ŁukaszewiczE. E. Ortega-Torres and M. A. Rojas-Medar, Strong periodic solutions for a class of abstract evolution equations, Nonlinear Anal., 54 (2003), 1045-1056.  doi: 10.1016/S0362-546X(03)00125-1.  Google Scholar

[12]

P. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 31-68.  doi: 10.1002/cpa.3160310103.  Google Scholar

[13]

P. Rabinowitz, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.  doi: 10.1137/0513027.  Google Scholar

[14]

G. R. Sell and Y. You, Inertial manifolds: The nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203-255.  doi: 10.1016/0022-0396(92)90152-D.  Google Scholar

[15]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Reginal Confeences Series in Applied Math., 66, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[16]

M. Usman and B. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Jrl. Syst. Sci. & Comp., 20 (2007), 284-292.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[17]

M. Usman and B. Zhang, Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability, Disc. Cont. Dyn. Sys., 26 (2010), 1509-1523.  doi: 10.3934/dcds.2010.26.1509.  Google Scholar

[18]

O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, 1982. Google Scholar

[19]

C. E. Wayne, Periodic solutions of nonlinear partial differential equations, Notices of Amer. Math. Soc., 44 (1997), 895-902.   Google Scholar

[20]

B. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), 337–357, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001.  Google Scholar

show all references

References:
[1]

J. BonaS. Sun and B. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[2]

J. BonaS. Sun and B. Zhang, Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane, Comm. Cont. Math., 5 (2003), 369-400.  doi: 10.1142/S021919970300104X.  Google Scholar

[3]

J. BonaS. Sun and B. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. PDE, 28 (2003), 1391-1436.  doi: 10.1081/PDE-120024373.  Google Scholar

[4]

H. Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1993), 409-426.  doi: 10.1090/S0273-0979-1983-15105-4.  Google Scholar

[5]

H. Brézis and L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.  doi: 10.1002/cpa.3160310102.  Google Scholar

[6]

S. ChenC. HsiaC. Jung and B. Kwon, Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation, J. Math. Anal. Appl., 445 (2017), 655-676.  doi: 10.1016/j.jmaa.2016.08.018.  Google Scholar

[7]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[8]

J. M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Diff. Equs., 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[9] R. Grimshaw, Nonlinear Ordinary Differential Equations, Applied Mathematics and Engineering Science Texts. CRC Press, Boca Raton, FL, 1993.   Google Scholar
[10]

J. B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure Appl. Math., 19 (1966), 371-420.  doi: 10.1002/cpa.3160190404.  Google Scholar

[11]

G. ŁukaszewiczE. E. Ortega-Torres and M. A. Rojas-Medar, Strong periodic solutions for a class of abstract evolution equations, Nonlinear Anal., 54 (2003), 1045-1056.  doi: 10.1016/S0362-546X(03)00125-1.  Google Scholar

[12]

P. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 31-68.  doi: 10.1002/cpa.3160310103.  Google Scholar

[13]

P. Rabinowitz, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.  doi: 10.1137/0513027.  Google Scholar

[14]

G. R. Sell and Y. You, Inertial manifolds: The nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203-255.  doi: 10.1016/0022-0396(92)90152-D.  Google Scholar

[15]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Reginal Confeences Series in Applied Math., 66, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[16]

M. Usman and B. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Jrl. Syst. Sci. & Comp., 20 (2007), 284-292.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[17]

M. Usman and B. Zhang, Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability, Disc. Cont. Dyn. Sys., 26 (2010), 1509-1523.  doi: 10.3934/dcds.2010.26.1509.  Google Scholar

[18]

O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, 1982. Google Scholar

[19]

C. E. Wayne, Periodic solutions of nonlinear partial differential equations, Notices of Amer. Math. Soc., 44 (1997), 895-902.   Google Scholar

[20]

B. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), 337–357, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001.  Google Scholar

[1]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[2]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[3]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[10]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[11]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[12]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[16]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[17]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[18]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (70)
  • HTML views (271)
  • Cited by (0)

Other articles
by authors

[Back to Top]