-
Previous Article
Collision-free flocking for a time-delay system
- DCDS-B Home
- This Issue
-
Next Article
On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model
Forced oscillation of viscous Burgers' equation with a time-periodic force
1. | Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA |
This paper is concerned about the existence of periodic solutions of the viscous Burgers' equation when a forced oscillation is prescribed. We establish the existence theory by contraction mapping in $ H^s[0,1] $ with $ s\ge 0 $. Asymptotical periodicity is obtained as well, and the periodic solution is achieved by selecting a suitable function as initial data to generate a solution and passing time limit to infinity. Moreover, uniqueness and global stability is achieved for this periodic solution.
References:
[1] |
J. Bona, S. Sun and B. Zhang,
A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.
doi: 10.1090/S0002-9947-01-02885-9. |
[2] |
J. Bona, S. Sun and B. Zhang,
Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane, Comm. Cont. Math., 5 (2003), 369-400.
doi: 10.1142/S021919970300104X. |
[3] |
J. Bona, S. Sun and B. Zhang,
A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. PDE, 28 (2003), 1391-1436.
doi: 10.1081/PDE-120024373. |
[4] |
H. Brézis,
Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1993), 409-426.
doi: 10.1090/S0273-0979-1983-15105-4. |
[5] |
H. Brézis and L. Nirenberg,
Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.
doi: 10.1002/cpa.3160310102. |
[6] |
S. Chen, C. Hsia, C. Jung and B. Kwon,
Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation, J. Math. Anal. Appl., 445 (2017), 655-676.
doi: 10.1016/j.jmaa.2016.08.018. |
[7] |
W. Craig and C. E. Wayne,
Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.
doi: 10.1002/cpa.3160461102. |
[8] |
J. M. Ghidaglia,
Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Diff. Equs., 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
R. Grimshaw, Nonlinear Ordinary Differential Equations, Applied Mathematics and Engineering Science Texts. CRC Press, Boca Raton, FL, 1993.
![]() |
[10] |
J. B. Keller and L. Ting,
Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure Appl. Math., 19 (1966), 371-420.
doi: 10.1002/cpa.3160190404. |
[11] |
G. Łukaszewicz, E. E. Ortega-Torres and M. A. Rojas-Medar,
Strong periodic solutions for a class of abstract evolution equations, Nonlinear Anal., 54 (2003), 1045-1056.
doi: 10.1016/S0362-546X(03)00125-1. |
[12] |
P. Rabinowitz,
Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 31-68.
doi: 10.1002/cpa.3160310103. |
[13] |
P. Rabinowitz,
Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.
doi: 10.1137/0513027. |
[14] |
G. R. Sell and Y. You,
Inertial manifolds: The nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203-255.
doi: 10.1016/0022-0396(92)90152-D. |
[15] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Reginal Confeences Series in Applied Math., 66, SIAM, Philadelphia, 1995.
doi: 10.1137/1.9781611970050. |
[16] |
M. Usman and B. Zhang,
Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Jrl. Syst. Sci. & Comp., 20 (2007), 284-292.
doi: 10.1007/s11424-007-9025-2. |
[17] |
M. Usman and B. Zhang,
Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability, Disc. Cont. Dyn. Sys., 26 (2010), 1509-1523.
doi: 10.3934/dcds.2010.26.1509. |
[18] |
O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, 1982. Google Scholar |
[19] |
C. E. Wayne,
Periodic solutions of nonlinear partial differential equations, Notices of Amer. Math. Soc., 44 (1997), 895-902.
|
[20] |
B. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), 337–357, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001. |
show all references
References:
[1] |
J. Bona, S. Sun and B. Zhang,
A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490.
doi: 10.1090/S0002-9947-01-02885-9. |
[2] |
J. Bona, S. Sun and B. Zhang,
Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane, Comm. Cont. Math., 5 (2003), 369-400.
doi: 10.1142/S021919970300104X. |
[3] |
J. Bona, S. Sun and B. Zhang,
A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. PDE, 28 (2003), 1391-1436.
doi: 10.1081/PDE-120024373. |
[4] |
H. Brézis,
Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1993), 409-426.
doi: 10.1090/S0273-0979-1983-15105-4. |
[5] |
H. Brézis and L. Nirenberg,
Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.
doi: 10.1002/cpa.3160310102. |
[6] |
S. Chen, C. Hsia, C. Jung and B. Kwon,
Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burgers' equation, J. Math. Anal. Appl., 445 (2017), 655-676.
doi: 10.1016/j.jmaa.2016.08.018. |
[7] |
W. Craig and C. E. Wayne,
Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.
doi: 10.1002/cpa.3160461102. |
[8] |
J. M. Ghidaglia,
Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Diff. Equs., 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
R. Grimshaw, Nonlinear Ordinary Differential Equations, Applied Mathematics and Engineering Science Texts. CRC Press, Boca Raton, FL, 1993.
![]() |
[10] |
J. B. Keller and L. Ting,
Periodic vibrations of systems governed by nonlinear partial differential equations, Comm. Pure Appl. Math., 19 (1966), 371-420.
doi: 10.1002/cpa.3160190404. |
[11] |
G. Łukaszewicz, E. E. Ortega-Torres and M. A. Rojas-Medar,
Strong periodic solutions for a class of abstract evolution equations, Nonlinear Anal., 54 (2003), 1045-1056.
doi: 10.1016/S0362-546X(03)00125-1. |
[12] |
P. Rabinowitz,
Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math., 31 (1978), 31-68.
doi: 10.1002/cpa.3160310103. |
[13] |
P. Rabinowitz,
Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343-352.
doi: 10.1137/0513027. |
[14] |
G. R. Sell and Y. You,
Inertial manifolds: The nonselfadjoint case, J. Diff. Eqns., 96 (1992), 203-255.
doi: 10.1016/0022-0396(92)90152-D. |
[15] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Reginal Confeences Series in Applied Math., 66, SIAM, Philadelphia, 1995.
doi: 10.1137/1.9781611970050. |
[16] |
M. Usman and B. Zhang,
Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Jrl. Syst. Sci. & Comp., 20 (2007), 284-292.
doi: 10.1007/s11424-007-9025-2. |
[17] |
M. Usman and B. Zhang,
Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability, Disc. Cont. Dyn. Sys., 26 (2010), 1509-1523.
doi: 10.3934/dcds.2010.26.1509. |
[18] |
O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, 1982. Google Scholar |
[19] |
C. E. Wayne,
Periodic solutions of nonlinear partial differential equations, Notices of Amer. Math. Soc., 44 (1997), 895-902.
|
[20] |
B. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), 337–357, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001. |
[1] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[2] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[3] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[4] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[5] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[6] |
Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082 |
[7] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[8] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[9] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[10] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[11] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[12] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[13] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[15] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[16] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[17] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[18] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[19] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[20] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]