-
Previous Article
Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria
- DCDS-B Home
- This Issue
-
Next Article
Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis
Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum
1. | College of Mathematics, Changchun Normal University, Changchun 130032, China |
2. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
This paper deals with the 3D incompressible Navier-Stokes equations with density-dependent viscosity in the whole space. The global well-posedness and exponential decay of strong solutions is established in the vacuum cases, provided the assumption that the bound of density is suitably small, which extends the results of [Nonlinear Anal. Real World Appl., 46:58-81, 2019] to the global one. However, it's entirely different from the recent work [arxiv: 1709.05608v1, 2017] and [J. Math. Fluid Mech., 15:747-758, 2013], there is not any smallness condition on the velocity.
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). Google Scholar |
[2] |
S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
Y. Cho and H. Kim,
Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.
doi: 10.1016/j.na.2004.07.020. |
[4] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[5] |
W. Craig, X. D. Huang and Y. Wang,
Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.
doi: 10.1007/s00021-013-0133-6. |
[6] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[7] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[8] |
C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. Google Scholar |
[9] |
X. D. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[10] |
X. D. Huang and Y. Wang,
Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[11] |
X. D. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[12] |
A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar |
[13] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[14] |
O. A. Ladyzhenskaya and V. A. Solonnikov,
Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.
doi: 10.1007/BF01085325. |
[15] |
J. K. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[16] |
P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford
Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
B. Q. Lü, X. D. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[18] |
B. Q. Lü and S. S. Song,
On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.
doi: 10.1016/j.nonrwa.2018.09.001. |
[19] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[20] |
H. B. Yu and P. X. Zhang,
Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.
doi: 10.1016/j.jmaa.2016.06.066. |
[21] |
J. W. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
show all references
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosi-birsk State University, Novosibirsk, USSR, 1973 (in Russian). Google Scholar |
[2] |
S. N. Antontsev, A. V. Kazhiktov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22. North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
Y. Cho and H. Kim,
Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465-480.
doi: 10.1016/j.na.2004.07.020. |
[4] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[5] |
W. Craig, X. D. Huang and Y. Wang,
Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747-758.
doi: 10.1007/s00021-013-0133-6. |
[6] |
B. Desjardins,
Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135-158.
doi: 10.1007/s002050050025. |
[7] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problem, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[8] |
C. He, J. Li and B. Lv, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, https://arXiv.org/abs/1709.05608. Google Scholar |
[9] |
X. D. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2014), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[10] |
X. D. Huang and Y. Wang,
Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[11] |
X. D. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[12] |
A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar |
[13] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[14] |
O. A. Ladyzhenskaya and V. A. Solonnikov,
Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Sov. Math., 9 (1978), 697-749.
doi: 10.1007/BF01085325. |
[15] |
J. K. Li,
Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.
doi: 10.1016/j.jde.2017.07.021. |
[16] |
P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. I. Incompressible Models, Oxford
Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The
Clarendon Press, Oxford University Press, New York, 1996. |
[17] |
B. Q. Lü, X. D. Shi and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.
doi: 10.1088/1361-6544/aab31f. |
[18] |
B. Q. Lü and S. S. Song,
On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58-81.
doi: 10.1016/j.nonrwa.2018.09.001. |
[19] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[20] |
H. B. Yu and P. X. Zhang,
Global strong solutions to the incompressible Navier-Stokes equations with density-dependent viscosity, J. Math. Anal. Appl., 444 (2016), 690-699.
doi: 10.1016/j.jmaa.2016.06.066. |
[21] |
J. W. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
[1] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[2] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[3] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[4] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[5] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[6] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[7] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[8] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[9] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[10] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[11] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[12] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[13] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[14] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[15] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[16] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[17] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[18] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[19] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[20] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]