March  2021, 26(3): 1305-1335. doi: 10.3934/dcdsb.2020164

Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria

1. 

Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison

2. 

Department of Mathematics, University of Wisconsin-Madison

3. 

Department of Mathematics, West Virginia University

Received  June 2019 Revised  February 2020 Published  May 2020

In this paper we study the rate of convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. We first analyze a three-species system with boundary equilibria in some stoichiometric classes, and whose right hand side is bounded above by a quadratic nonlinearity in the positive orthant. We prove similar results on the convergence to the positive equilibrium for a fairly general two-species reversible reaction-diffusion network with boundary equilibria.

Citation: Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164
References:
[1]

D. F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math., 68 (2008), 1464-1476.  doi: 10.1137/070698282.  Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets, SIAM J. Appl. Math., 70 (2010), 1840-1858.  doi: 10.1137/090764098.  Google Scholar

[3]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[4]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[5]

W. X. ChenC. M. Li and E. S. Wright, On a nonlinear parabolic system-modeling chemical reactions in rivers, Communications On Pure And Applied Analysis, 4 (2005), 889-899.  doi: 10.3934/cpaa.2005.4.889.  Google Scholar

[6]

M. ChoulliL. Kayser and E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bulletin of the Australian Mathematical Society, 92 (2015), 429-439.  doi: 10.1017/S0004972715000611.  Google Scholar

[7]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[8]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[9]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2016), arXiv: 1501.02860. Google Scholar

[10]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[11]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoamericana, 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[12]

L. Desvillettes and K. Fellner, Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, System Modelling and Optimization, IFIP AICT, 443 (2014), 96-104.   Google Scholar

[13]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[14]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion system arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[15]

M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972/73), 187-194.  doi: 10.1007/BF00255665.  Google Scholar

[16]

K. Fellner, W. Prager and B. Q. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinet. Relat. Models, 10 (2017), 1055–1087, arXiv: 1504.08221. doi: 10.3934/krm.2017042.  Google Scholar

[17]

K. Fellner and B. Q. Tang, Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems, Z. Angew. Math. Phys., 69 (2018), Paper No. 54, 30 pp. doi: 10.1007/s00033-018-0948-3.  Google Scholar

[18]

J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal., 218 (2015), 553-587.  doi: 10.1007/s00205-015-0866-x.  Google Scholar

[19]

W. E. FitzgibbonJ. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Anal., 19 (1992), 885-899.  doi: 10.1016/0362-546X(92)90057-L.  Google Scholar

[20]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[21]

M. Gopalkrishnan, E. Miller and A. Shiu, A projection argument for differential inclusions, with applications to persistence of mass-action kinetics, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 025, 25 pp. doi: 10.3842/SIGMA.2013.025.  Google Scholar

[22]

F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.  doi: 10.1007/BF00251225.  Google Scholar

[23]

F. Horn, The dynamics of open reaction systems, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, SIAM-AMS Proceedings, Amer. Math. Soc., Providence, R.I., 8 (1974), 125-137.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, AMS, 23 (1995). Google Scholar

[25]

A. MielkeJ. Haskovec and P. A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dynam. Differential Equations, 27 (2015), 897-928.  doi: 10.1007/s10884-014-9394-x.  Google Scholar

[26]

M. Minchevaand and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Anal., 56 (2004), 1105-1131.  doi: 10.1016/j.na.2003.10.025.  Google Scholar

[27]

F. MohamedC. Pantea and A. Tudorascu, Chemical reaction-diffusion networks: Convergence of the method of lines, J. Math. Chem., 56 (2018), 30-68.  doi: 10.1007/s10910-017-0779-z.  Google Scholar

[28]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[29]

M. PierreT. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comp., 8 (2018), 836-858.  doi: 10.11948/2018.836.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

F. Rothe, Global Solutions of Reaction-Diffusion System, Lecture Notes in Mathematics, 1072. Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[32]

D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27 (2000), 89-110.  doi: 10.1023/A:1019183206064.  Google Scholar

[33]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, 258. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028-1047.  doi: 10.1109/9.935056.  Google Scholar

[35]

M. E. Taylor, Partial Differential Equation Ⅲ. Nonlinear Equations, Springer Series Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[36]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L^p$-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47-51.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

show all references

References:
[1]

D. F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math., 68 (2008), 1464-1476.  doi: 10.1137/070698282.  Google Scholar

[2]

D. F. Anderson and A. Shiu, The dynamics of weakly reversible population processes near facets, SIAM J. Appl. Math., 70 (2010), 1840-1858.  doi: 10.1137/090764098.  Google Scholar

[3]

D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.  doi: 10.1137/11082631X.  Google Scholar

[4]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.  Google Scholar

[5]

W. X. ChenC. M. Li and E. S. Wright, On a nonlinear parabolic system-modeling chemical reactions in rivers, Communications On Pure And Applied Analysis, 4 (2005), 889-899.  doi: 10.3934/cpaa.2005.4.889.  Google Scholar

[6]

M. ChoulliL. Kayser and E. M. Ouhabaz, Observations on Gaussian upper bounds for Neumann heat kernels, Bulletin of the Australian Mathematical Society, 92 (2015), 429-439.  doi: 10.1017/S0004972715000611.  Google Scholar

[7]

G. CraciunA. DickensteinA. Shiu and B. Sturmfels, Toric dynamical systems, Journal of Symbolic Computation, 44 (2009), 1551-1565.  doi: 10.1016/j.jsc.2008.08.006.  Google Scholar

[8]

G. CraciunF. Nazarov and C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.  doi: 10.1137/100812355.  Google Scholar

[9]

G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, (2016), arXiv: 1501.02860. Google Scholar

[10]

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.  Google Scholar

[11]

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: Slowly growing a-priori bounds, Rev. Mat. Iberoamericana, 24 (2008), 407-431.  doi: 10.4171/RMI/541.  Google Scholar

[12]

L. Desvillettes and K. Fellner, Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, System Modelling and Optimization, IFIP AICT, 443 (2014), 96-104.   Google Scholar

[13]

L. DesvillettesK. FellnerM. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Adv. Nonlinear Stud., 7 (2007), 491-511.  doi: 10.1515/ans-2007-0309.  Google Scholar

[14]

L. DesvillettesK. Fellner and B. Q. Tang, Trend to equilibrium for reaction-diffusion system arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), 2666-2709.  doi: 10.1137/16M1073935.  Google Scholar

[15]

M. Feinberg, Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49 (1972/73), 187-194.  doi: 10.1007/BF00255665.  Google Scholar

[16]

K. Fellner, W. Prager and B. Q. Tang, The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks, Kinet. Relat. Models, 10 (2017), 1055–1087, arXiv: 1504.08221. doi: 10.3934/krm.2017042.  Google Scholar

[17]

K. Fellner and B. Q. Tang, Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems, Z. Angew. Math. Phys., 69 (2018), Paper No. 54, 30 pp. doi: 10.1007/s00033-018-0948-3.  Google Scholar

[18]

J. Fischer, Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal., 218 (2015), 553-587.  doi: 10.1007/s00205-015-0866-x.  Google Scholar

[19]

W. E. FitzgibbonJ. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Anal., 19 (1992), 885-899.  doi: 10.1016/0362-546X(92)90057-L.  Google Scholar

[20]

M. GopalkrishnanE. Miller and A. Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.  doi: 10.1137/130928170.  Google Scholar

[21]

M. Gopalkrishnan, E. Miller and A. Shiu, A projection argument for differential inclusions, with applications to persistence of mass-action kinetics, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 025, 25 pp. doi: 10.3842/SIGMA.2013.025.  Google Scholar

[22]

F. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47 (1972), 81-116.  doi: 10.1007/BF00251225.  Google Scholar

[23]

F. Horn, The dynamics of open reaction systems, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, SIAM-AMS Proceedings, Amer. Math. Soc., Providence, R.I., 8 (1974), 125-137.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, AMS, 23 (1995). Google Scholar

[25]

A. MielkeJ. Haskovec and P. A. Markowich, On uniform decay of the entropy for reaction-diffusion systems, J. Dynam. Differential Equations, 27 (2015), 897-928.  doi: 10.1007/s10884-014-9394-x.  Google Scholar

[26]

M. Minchevaand and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Anal., 56 (2004), 1105-1131.  doi: 10.1016/j.na.2003.10.025.  Google Scholar

[27]

F. MohamedC. Pantea and A. Tudorascu, Chemical reaction-diffusion networks: Convergence of the method of lines, J. Math. Chem., 56 (2018), 30-68.  doi: 10.1007/s10910-017-0779-z.  Google Scholar

[28]

C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.  doi: 10.1137/110840509.  Google Scholar

[29]

M. PierreT. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comp., 8 (2018), 836-858.  doi: 10.11948/2018.836.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

F. Rothe, Global Solutions of Reaction-Diffusion System, Lecture Notes in Mathematics, 1072. Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[32]

D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27 (2000), 89-110.  doi: 10.1023/A:1019183206064.  Google Scholar

[33]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften, 258. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[34]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028-1047.  doi: 10.1109/9.935056.  Google Scholar

[35]

M. E. Taylor, Partial Differential Equation Ⅲ. Nonlinear Equations, Springer Series Applied Mathematical Sciences, 117. Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[36]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L^p$-norm, Electron. Res. Announc. Amer. Math. Soc., 8 (2002), 47-51.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

Figure 1.  Construction of a rectangular invariant region for the reversible reaction $ m_1A+n_1B\rightleftharpoons m_2A+n_2B $ for the cases a. $ \bar m = m_1-m_2, \ \bar n = n_2-n_1 $ nonzero and of the same sign; b. $ \bar m, \bar n $ nonzero and of different signs
[1]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[3]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[4]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[5]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[6]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[7]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[8]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[9]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[13]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[18]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]