
-
Previous Article
On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients
- DCDS-B Home
- This Issue
-
Next Article
Bistability of sequestration networks
Dynamics of the QR-flow for upper Hessenberg real matrices
Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain |
We investigate the main phase space properties of the QR-flow when restricted to upper Hessenberg matrices. A complete description of the linear behavior of the equilibrium matrices is given. The main result classifies the possible $ \alpha $- and $ \omega $-limits of the orbits for this system. Furthermore, we characterize the set of initial matrices for which there is convergence towards an equilibrium matrix. Several numerical examples show the different limit behavior of the orbits and illustrate the theory.
References:
[1] |
A. Bostan and P. Dumas,
Wronskians and linear independence, The American Mathematical Monthly, 117 (2010), 722-727.
doi: 10.4169/000298910x515785. |
[2] |
M. P. Calvo, A. Iserles and A. Zanna,
Numerical solution of isospectral flows, Math. Comp., 66 (1997), 1461-1486.
doi: 10.1090/S0025-5718-97-00902-2. |
[3] |
M. P. Calvo, A. Iserles and A. Zanna,
Semi-explicit methods for isospectral flows, Advances in Computational Mathematics, 14 (2001), 1-24.
doi: 10.1023/A:1016635812817. |
[4] |
M. T. Chu,
The generalized Toda flow, the QR algorithm and the center manifold theory, SIAM J. Alg. Disc. Meth., 5 (1984), 187-201.
doi: 10.1137/0605020. |
[5] |
M. T. Chu,
Matrix differential equations: A continuous realization process for linear algebra problems, Nonlinear Anal., 18 (1992), 1125-1146.
doi: 10.1016/0362-546X(92)90157-A. |
[6] |
M. T. Chu,
Linear algebra algorithms as dynamical systems, Acta Numer., 17 (2008), 1-86.
doi: 10.1017/S0962492906340019. |
[7] |
M. T. Chu and L. K. Norris,
Isospectral flows and abstract matrix factorizations, SIAM J. Numer. Anal., 25 (1988), 1383-1391.
doi: 10.1137/0725080. |
[8] |
M. J. Colbrook and A. C. Hansen,
On the infinite-dimensional QR algorithm, Numerische Mathematik, 143 (2019), 17-83.
doi: 10.1007/s00211-019-01047-5. |
[9] |
P. Deift, L. C. Li, T. Nanda and C. Tomei,
The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math., 39 (1986), 183-232.
doi: 10.1002/cpa.3160390203. |
[10] |
P. Deift, L. C. Li and C. Tomei,
Matrix factorizations and integrable systems, Comm. Pure Appl. Math., 42 (1989), 443-521.
doi: 10.1002/cpa.3160420405. |
[11] |
P. Deift, T. Nanda and C. Tomei,
Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20 (1983), 1-22.
doi: 10.1137/0720001. |
[12] |
P. J. Eberlein and C. P. Huang,
Global convergence of the QR algorithm for unitary matrices with some results for normal matrices, SIAM J. Numer. Anal., 12 (1975), 97-104.
doi: 10.1137/0712009. |
[13] |
H. Flaschka,
The Toda lattice. Ⅰ. Existence of integrals, Phys. Rev. B (3), 9 (1974), 1924-1925.
doi: 10.1103/PhysRevB.9.1924. |
[14] |
J. G. F. Francis,
The $QR$ transformation: A unitary analogue to the $LR$ transformation. Ⅰ, Comput. J., 4 (1961/62), 265-271.
doi: 10.1093/comjnl/4.3.265. |
[15] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[16] |
R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing Computational Algorithms, Corrected reprint of the 1969 edition. Robert E. Krieger Publishing Co., Huntington, N.Y., 1978. |
[17] |
J. K. Hale, Ordinary Differential Equations, Second edition, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[18] |
A. C. Hansen, On the Approximation of Spectra of Linear Hilbert Space Operators, PhD thesis, University of Cambridge, 2008. Google Scholar |
[19] |
M. Hénon,
Integrals of the Toda lattice, Phys. Rev. B (3), 9 (1974), 1921-1923.
doi: 10.1103/PhysRevB.9.1921. |
[20] |
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. |
[21] |
À. Jorba and M. R. Zou,
A software package for the numerical integration of ODEs by means of high-order Taylor methods, Experiment. Math., 14 (2005), 99-117.
doi: 10.1080/10586458.2005.10128904. |
[22] |
Y. Kodama and B. A. Shipman, Fifty years of the finite nonperiodic Toda lattice: A geometric and topological viewpoint, J. Phys. A, 51 (2018), 353001, 39 pp.
doi: 10.1088/1751-8121/aacecf. |
[23] |
J. Moser,
Finitely many mass points on the line under the influence of an exponential potential - an integrable system, Dynamical Systems, Theory and Applications, Lecture Notes in Phys., Springer, Berlin, 38 (1975), 467-497.
|
[24] |
T. Nanda,
Differential equations and the $QR$ algorithm, SIAM J. Numer. Anal., 22 (1985), 310-321.
doi: 10.1137/0722019. |
[25] |
B. Parlett,
Canonical decomposition of hessenberg matrices, Math. Comp., 21 (1967), 223-227.
doi: 10.1090/S0025-5718-1967-0228519-6. |
[26] |
B. Parlett,
Global convergence of the basic QR algorithm on Hessenberg matrices, Math. Comp., 22 (1968), 803-817.
doi: 10.2307/2004579. |
[27] |
W. W. Symes,
Hamiltonian group actions and integrable systems, Phys. D, 1 (1980), 339-374.
doi: 10.1016/0167-2789(80)90017-2. |
[28] |
W. W. Symes,
The $QR$ algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D, 4 (1981/82), 275-280.
doi: 10.1016/0167-2789(82)90069-0. |
[29] |
M. Toda, Theory of Nonlinear Lattices, Second edition, Springer Series in Solid-State Sciences, 20. Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-83219-2. |
[30] |
C. Tomei,
The Toda lattice, old and new, J. Geom. Mech., 5 (2013), 511-530.
doi: 10.3934/jgm.2013.5.511. |
[31] |
M. Webb, Isospectral Algorithms, Toeplitz Matrices and Orthogonal Polynomials, PhD thesis, University of Cambridge, 2017. Google Scholar |
[32] |
F. Z. Zhang, Matrix Theory. Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011.
doi: 10.1007/978-1-4614-1099-7. |
show all references
References:
[1] |
A. Bostan and P. Dumas,
Wronskians and linear independence, The American Mathematical Monthly, 117 (2010), 722-727.
doi: 10.4169/000298910x515785. |
[2] |
M. P. Calvo, A. Iserles and A. Zanna,
Numerical solution of isospectral flows, Math. Comp., 66 (1997), 1461-1486.
doi: 10.1090/S0025-5718-97-00902-2. |
[3] |
M. P. Calvo, A. Iserles and A. Zanna,
Semi-explicit methods for isospectral flows, Advances in Computational Mathematics, 14 (2001), 1-24.
doi: 10.1023/A:1016635812817. |
[4] |
M. T. Chu,
The generalized Toda flow, the QR algorithm and the center manifold theory, SIAM J. Alg. Disc. Meth., 5 (1984), 187-201.
doi: 10.1137/0605020. |
[5] |
M. T. Chu,
Matrix differential equations: A continuous realization process for linear algebra problems, Nonlinear Anal., 18 (1992), 1125-1146.
doi: 10.1016/0362-546X(92)90157-A. |
[6] |
M. T. Chu,
Linear algebra algorithms as dynamical systems, Acta Numer., 17 (2008), 1-86.
doi: 10.1017/S0962492906340019. |
[7] |
M. T. Chu and L. K. Norris,
Isospectral flows and abstract matrix factorizations, SIAM J. Numer. Anal., 25 (1988), 1383-1391.
doi: 10.1137/0725080. |
[8] |
M. J. Colbrook and A. C. Hansen,
On the infinite-dimensional QR algorithm, Numerische Mathematik, 143 (2019), 17-83.
doi: 10.1007/s00211-019-01047-5. |
[9] |
P. Deift, L. C. Li, T. Nanda and C. Tomei,
The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math., 39 (1986), 183-232.
doi: 10.1002/cpa.3160390203. |
[10] |
P. Deift, L. C. Li and C. Tomei,
Matrix factorizations and integrable systems, Comm. Pure Appl. Math., 42 (1989), 443-521.
doi: 10.1002/cpa.3160420405. |
[11] |
P. Deift, T. Nanda and C. Tomei,
Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20 (1983), 1-22.
doi: 10.1137/0720001. |
[12] |
P. J. Eberlein and C. P. Huang,
Global convergence of the QR algorithm for unitary matrices with some results for normal matrices, SIAM J. Numer. Anal., 12 (1975), 97-104.
doi: 10.1137/0712009. |
[13] |
H. Flaschka,
The Toda lattice. Ⅰ. Existence of integrals, Phys. Rev. B (3), 9 (1974), 1924-1925.
doi: 10.1103/PhysRevB.9.1924. |
[14] |
J. G. F. Francis,
The $QR$ transformation: A unitary analogue to the $LR$ transformation. Ⅰ, Comput. J., 4 (1961/62), 265-271.
doi: 10.1093/comjnl/4.3.265. |
[15] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[16] |
R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing Computational Algorithms, Corrected reprint of the 1969 edition. Robert E. Krieger Publishing Co., Huntington, N.Y., 1978. |
[17] |
J. K. Hale, Ordinary Differential Equations, Second edition, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[18] |
A. C. Hansen, On the Approximation of Spectra of Linear Hilbert Space Operators, PhD thesis, University of Cambridge, 2008. Google Scholar |
[19] |
M. Hénon,
Integrals of the Toda lattice, Phys. Rev. B (3), 9 (1974), 1921-1923.
doi: 10.1103/PhysRevB.9.1921. |
[20] |
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. |
[21] |
À. Jorba and M. R. Zou,
A software package for the numerical integration of ODEs by means of high-order Taylor methods, Experiment. Math., 14 (2005), 99-117.
doi: 10.1080/10586458.2005.10128904. |
[22] |
Y. Kodama and B. A. Shipman, Fifty years of the finite nonperiodic Toda lattice: A geometric and topological viewpoint, J. Phys. A, 51 (2018), 353001, 39 pp.
doi: 10.1088/1751-8121/aacecf. |
[23] |
J. Moser,
Finitely many mass points on the line under the influence of an exponential potential - an integrable system, Dynamical Systems, Theory and Applications, Lecture Notes in Phys., Springer, Berlin, 38 (1975), 467-497.
|
[24] |
T. Nanda,
Differential equations and the $QR$ algorithm, SIAM J. Numer. Anal., 22 (1985), 310-321.
doi: 10.1137/0722019. |
[25] |
B. Parlett,
Canonical decomposition of hessenberg matrices, Math. Comp., 21 (1967), 223-227.
doi: 10.1090/S0025-5718-1967-0228519-6. |
[26] |
B. Parlett,
Global convergence of the basic QR algorithm on Hessenberg matrices, Math. Comp., 22 (1968), 803-817.
doi: 10.2307/2004579. |
[27] |
W. W. Symes,
Hamiltonian group actions and integrable systems, Phys. D, 1 (1980), 339-374.
doi: 10.1016/0167-2789(80)90017-2. |
[28] |
W. W. Symes,
The $QR$ algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D, 4 (1981/82), 275-280.
doi: 10.1016/0167-2789(82)90069-0. |
[29] |
M. Toda, Theory of Nonlinear Lattices, Second edition, Springer Series in Solid-State Sciences, 20. Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-83219-2. |
[30] |
C. Tomei,
The Toda lattice, old and new, J. Geom. Mech., 5 (2013), 511-530.
doi: 10.3934/jgm.2013.5.511. |
[31] |
M. Webb, Isospectral Algorithms, Toeplitz Matrices and Orthogonal Polynomials, PhD thesis, University of Cambridge, 2017. Google Scholar |
[32] |
F. Z. Zhang, Matrix Theory. Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011.
doi: 10.1007/978-1-4614-1099-7. |








Set of |
|
Identity matrix of dimension |
|
Real matrices subsets: | |
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Block real matrices subsets: | |
Set of |
|
Set of |
|
Set of |
Set of |
|
Identity matrix of dimension |
|
Real matrices subsets: | |
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Set of |
|
Block real matrices subsets: | |
Set of |
|
Set of |
|
Set of |
[1] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
[2] |
Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020 doi: 10.3934/mfc.2021001 |
[3] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[4] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[5] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[6] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[7] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[8] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[9] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[10] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[11] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[12] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[13] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[14] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[15] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[16] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[17] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[18] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[19] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[20] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]