# American Institute of Mathematical Sciences

March  2021, 26(3): 1469-1497. doi: 10.3934/dcdsb.2020169

## Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures

 1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA 2 Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Pabellón I - Ciudad Universitaria, Buenos Aires - Argentina

* Corresponding author: azmy.ackleh@louisiana.edu

Received  September 2019 Revised  February 2020 Published  March 2021 Early access  May 2020

In this paper we consider a selection-mutation model with an advection term formulated on the space of finite signed measures on $\mathbb{R}^d$. The selection-mutation kernel is described by a family of measures which allows the study of continuous and discrete kernels under the same setting. We rescale the selection-mutation kernel to obtain a diffusively rescaled selection-mutation model. We prove that if the rescaled selection-mutation kernel converges to a pure selection kernel then the solution of the diffusively rescaled model converges to a solution of an advection-diffusion equation.

Citation: Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169
##### References:

show all references

##### References:
 [1] Pierre-Emmanuel Jabin. Small populations corrections for selection-mutation models. Networks and Heterogeneous Media, 2012, 7 (4) : 805-836. doi: 10.3934/nhm.2012.7.805 [2] Azmy S. Ackleh, Shuhua Hu. Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 133-157. doi: 10.3934/mbe.2007.4.133 [3] Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861 [4] Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044 [5] P. Magal, G. F. Webb. Mutation, selection, and recombination in a model of phenotype evolution. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 221-236. doi: 10.3934/dcds.2000.6.221 [6] Jacek Banasiak, Aleksandra Falkiewicz. A singular limit for an age structured mutation problem. Mathematical Biosciences & Engineering, 2017, 14 (1) : 17-30. doi: 10.3934/mbe.2017002 [7] Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 [8] Francesca Verrilli, Hamed Kebriaei, Luigi Glielmo, Martin Corless, Carmen Del Vecchio. Effects of selection and mutation on epidemiology of X-linked genetic diseases. Mathematical Biosciences & Engineering, 2017, 14 (3) : 755-775. doi: 10.3934/mbe.2017042 [9] Ryoji Sawa. Stochastic stability in the large population and small mutation limits for coordination games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021015 [10] Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106 [11] Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019 [12] Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937 [13] Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002 [14] Arthur Bottois, Nicolae Cîndea. Controllability of the linear elasticity as a first-order system using a stabilized space-time mixed formulation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022028 [15] Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations and Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355 [16] Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic and Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043 [17] Lei Wu. Diffusive limit with geometric correction of unsteady neutron transport equation. Kinetic and Related Models, 2017, 10 (4) : 1163-1203. doi: 10.3934/krm.2017045 [18] Maia Martcheva, Mimmo Iannelli, Xue-Zhi Li. Subthreshold coexistence of strains: the impact of vaccination and mutation. Mathematical Biosciences & Engineering, 2007, 4 (2) : 287-317. doi: 10.3934/mbe.2007.4.287 [19] Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 [20] Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

2021 Impact Factor: 1.497