
-
Previous Article
On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms
- DCDS-B Home
- This Issue
-
Next Article
Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts
The Poincaré bifurcation of a SD oscillator
1. | School of Mathematics, Soochow University, 215006, Suzhou, China |
2. | School of Mathematics (Zhuhai), Sun Yat-sen University, 519082, Zhuhai, China |
A van der Pol damped SD oscillator, which was proposed by Ruilan Tian, Qingjie Cao and Shaopu Yang (2010, Nonlinear Dynamics, 59, 19-27), is studied. By improving the criterion function of determining the lowest upper bound of the number of zeros of Abelian Integrals, we show that the number of zeros of Abelian integrals of this SD oscillator is two which is sharp.
References:
[1] |
J. Awrejcewicz and M. M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-type Methods, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 60, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
doi: 10.1142/9789812709103. |
[2] |
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, C. Grebogi and J. M. T. Thompson, Archetypal oscillator for smooth and discontinuous dynamics, Phys. Rev. E (3), 74 (2006), 5pp.
doi: 10.1103/PhysRevE.74.046218. |
[3] |
Q. Cao, M. Wiercigroch, E. Pavlovskaia, J. Thompson and C. Grebogi,
Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 635-652.
doi: 10.1098/rsta.2007.2115. |
[4] |
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, C. Grebogi and J. M. T. Thompson,
The limit case response of the archetypal oscillator for smooth and discontinuous dynamics, Int. J. Non-Lin. Mech., 43 (2008), 462-473.
doi: 10.1016/j.ijnonlinmec.2008.01.003. |
[5] |
H. Chen and X. Li,
Global phase portraits of memristor oscillators, Internat. J. Bifur. Chaos, 24 (2014), 1-31.
doi: 10.1142/S0218127414501521. |
[6] |
H. Chen, Global analysis on the discontinuous limit case of a smooth oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 21pp.
doi: 10.1142/S0218127416500619. |
[7] |
H. Chen, J. Llibre and Y. Tang,
Global dynamics of a SD oscillator, Nonlinear Dyn., 91 (2018), 1755-1777.
doi: 10.1007/s11071-017-3979-y. |
[8] |
A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey,
Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems, Phys. D, 241 (2012), 1845-1860.
doi: 10.1016/j.physd.2011.09.017. |
[9] |
A. F. Filippov, Dierential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[10] |
E. Freire, E. Ponce and J. Ros,
Limit cycle bifurcation from center in symmetric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907.
doi: 10.1142/S0218127499000638. |
[11] |
M. Grau, F. Mañosas and J. Villadelpart,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[12] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[13] |
R. I. Leine and D. H. van Campen,
Bifurcation phenomena in non-smooth dynamical systems, Eur. J. Mech. A Solids, 25 (2006), 595-616.
doi: 10.1016/j.euromechsol.2006.04.004. |
[14] |
C. Li and Z.-F. Zhang,
A criterion for determining the monotonocity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.
doi: 10.1006/jdeq.1996.0017. |
[15] |
C. Liu, G. Chen and Z. Sun,
New criteria for the monotonicity of the ratio of two Abelian integrals, J. Math. Anal. Appl., 465 (2018), 220-234.
doi: 10.1016/j.jmaa.2018.04.074. |
[16] |
C. Liu and D. Xiao, The smallest upper bound on the number of zeros of Abelian integrals, J. Differential Equations, in press.
doi: 10.1016/j.jde.2020.03.016. |
[17] |
O. Makarenkov and J. S. W. Lamb,
Dynamics and bifurcations of nonsmooth systems: A survey, Phys. D, 241 (2012), 1826-1844.
doi: 10.1016/j.physd.2012.08.002. |
[18] |
F. Mañosas and J. Villadelpart,
Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[19] |
R. Tian, Q. Cao and S. Yang,
The codimension-two bifurcation for the recent proposed SD oscillator, Nonlinear Dynam., 59 (2010), 19-27.
doi: 10.1007/s11071-009-9517-9. |
show all references
References:
[1] |
J. Awrejcewicz and M. M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-type Methods, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 60, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
doi: 10.1142/9789812709103. |
[2] |
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, C. Grebogi and J. M. T. Thompson, Archetypal oscillator for smooth and discontinuous dynamics, Phys. Rev. E (3), 74 (2006), 5pp.
doi: 10.1103/PhysRevE.74.046218. |
[3] |
Q. Cao, M. Wiercigroch, E. Pavlovskaia, J. Thompson and C. Grebogi,
Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 635-652.
doi: 10.1098/rsta.2007.2115. |
[4] |
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, C. Grebogi and J. M. T. Thompson,
The limit case response of the archetypal oscillator for smooth and discontinuous dynamics, Int. J. Non-Lin. Mech., 43 (2008), 462-473.
doi: 10.1016/j.ijnonlinmec.2008.01.003. |
[5] |
H. Chen and X. Li,
Global phase portraits of memristor oscillators, Internat. J. Bifur. Chaos, 24 (2014), 1-31.
doi: 10.1142/S0218127414501521. |
[6] |
H. Chen, Global analysis on the discontinuous limit case of a smooth oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 21pp.
doi: 10.1142/S0218127416500619. |
[7] |
H. Chen, J. Llibre and Y. Tang,
Global dynamics of a SD oscillator, Nonlinear Dyn., 91 (2018), 1755-1777.
doi: 10.1007/s11071-017-3979-y. |
[8] |
A. Colombo, M. di Bernardo, S. J. Hogan and M. R. Jeffrey,
Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems, Phys. D, 241 (2012), 1845-1860.
doi: 10.1016/j.physd.2011.09.017. |
[9] |
A. F. Filippov, Dierential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[10] |
E. Freire, E. Ponce and J. Ros,
Limit cycle bifurcation from center in symmetric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907.
doi: 10.1142/S0218127499000638. |
[11] |
M. Grau, F. Mañosas and J. Villadelpart,
A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363 (2011), 109-129.
doi: 10.1090/S0002-9947-2010-05007-X. |
[12] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[13] |
R. I. Leine and D. H. van Campen,
Bifurcation phenomena in non-smooth dynamical systems, Eur. J. Mech. A Solids, 25 (2006), 595-616.
doi: 10.1016/j.euromechsol.2006.04.004. |
[14] |
C. Li and Z.-F. Zhang,
A criterion for determining the monotonocity of the ratio of two Abelian integrals, J. Differential Equations, 124 (1996), 407-424.
doi: 10.1006/jdeq.1996.0017. |
[15] |
C. Liu, G. Chen and Z. Sun,
New criteria for the monotonicity of the ratio of two Abelian integrals, J. Math. Anal. Appl., 465 (2018), 220-234.
doi: 10.1016/j.jmaa.2018.04.074. |
[16] |
C. Liu and D. Xiao, The smallest upper bound on the number of zeros of Abelian integrals, J. Differential Equations, in press.
doi: 10.1016/j.jde.2020.03.016. |
[17] |
O. Makarenkov and J. S. W. Lamb,
Dynamics and bifurcations of nonsmooth systems: A survey, Phys. D, 241 (2012), 1826-1844.
doi: 10.1016/j.physd.2012.08.002. |
[18] |
F. Mañosas and J. Villadelpart,
Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[19] |
R. Tian, Q. Cao and S. Yang,
The codimension-two bifurcation for the recent proposed SD oscillator, Nonlinear Dynam., 59 (2010), 19-27.
doi: 10.1007/s11071-009-9517-9. |

[1] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[2] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[4] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[5] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[6] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[7] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[8] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[9] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[10] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[11] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[12] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[13] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[14] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[15] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[16] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[17] |
Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 |
[18] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[19] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[20] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]