-
Previous Article
Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems
- DCDS-B Home
- This Issue
-
Next Article
On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms
Ergodicity of stochastic damped Ostrovsky equation driven by white noise
1. | College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China |
2. | College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
The current paper is devoted to the stochastic damped Ostrovsky equation driven by white noise. By establishing the uniform estimates for the solution in $ H^1 $ norm, we prove the global well-posedness and the existence of invariant measure for stochastic damped Ostrovsky equation with random initial value. Moreover, we obtain the ergodicity of stochastic damped Ostrovsky equation with deterministic initial conditions.
References:
[1] |
A. de Bouard and E. Hausenblas,
The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.
doi: 10.1016/j.jmaa.2019.02.036. |
[2] |
A. de Bouard and A. Debussche,
On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[3] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[4] |
T. Dankel Jr.,
On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.
|
[5] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.
doi: 10.1512/iumj.2018.67.7365. |
[6] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.
doi: 10.1007/s40072-016-0090-1. |
[7] |
V. M. Galkin and Y. A. Stepan'yants,
On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.
doi: 10.1016/0021-8928(91)90148-N. |
[8] |
P. Isaza and J. Mejía,
Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.
doi: 10.1016/j.jde.2006.04.007. |
[9] |
P. Isaza and J. Mejía,
Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.
doi: 10.1016/j.na.2006.07.031. |
[10] |
P. Isazaa and J. Mejía,
Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.
doi: 10.1016/j.na.2008.03.010. |
[11] |
S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar |
[12] |
F. Linares and A. Milanés,
Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.
doi: 10.1016/j.jde.2005.07.023. |
[13] |
L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. Google Scholar |
[14] |
S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[15] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[16] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[17] |
W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp.
doi: 10.1007/s00030-018-0514-x. |
[18] |
W. Yan, M. Yang and J. Duan,
White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.
doi: 10.1016/j.jde.2019.06.003. |
show all references
References:
[1] |
A. de Bouard and E. Hausenblas,
The nonlinear Schrödinger equation driven by jump processes, J. Math. Anal. Appl., 475 (2019), 215-252.
doi: 10.1016/j.jmaa.2019.02.036. |
[2] |
A. de Bouard and A. Debussche,
On the stochastic Korteweg-de Vries equation, J. Funct. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[3] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries equation, J. Funct. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[4] |
T. Dankel Jr.,
On the stochastic Korteweg-de Vries equation driven by white noise, Differential Integral Equations, 13 (2000), 827-836.
|
[5] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measure for the stochastic damped KdV equation, Indiana Univ. Math. J., 67 (2018), 1221-1254.
doi: 10.1512/iumj.2018.67.7365. |
[6] |
I. Ekren, I. Kukavica and M. Ziane,
Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 343-367.
doi: 10.1007/s40072-016-0090-1. |
[7] |
V. M. Galkin and Y. A. Stepan'yants,
On the existence of stationary solitary waves in a rotating fluid, J. Appl. Math. Mech., 55 (1991), 939-943.
doi: 10.1016/0021-8928(91)90148-N. |
[8] |
P. Isaza and J. Mejía,
Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Differential Equations, 230 (2006), 661-681.
doi: 10.1016/j.jde.2006.04.007. |
[9] |
P. Isaza and J. Mejía,
Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal., 67 (2007), 1482-1503.
doi: 10.1016/j.na.2006.07.031. |
[10] |
P. Isazaa and J. Mejía,
Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal., 70 (2009), 2306-2316.
doi: 10.1016/j.na.2008.03.010. |
[11] |
S. Li, Well-Posedness and Asymptotic Behavior for Some Nonlinear Evolution Equations, Ph.D thesis, 2015. Google Scholar |
[12] |
F. Linares and A. Milanés,
Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 222 (2006), 325-340.
doi: 10.1016/j.jde.2005.07.023. |
[13] |
L. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. Google Scholar |
[14] |
S. Peszat and J. Zabczyk, Stochatsic Partial Diffrential Equations with Lévy Noise. An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, 113, Cambridge University Press, Cambridge, 2007.
doi: 10.1017/CBO9780511721373.![]() ![]() |
[15] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[16] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[17] |
W. Yan, Y. Li, J. Huang and J. Duan, The Cauchy problem for the Ostrovsky equation with positive dispersion, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 37pp.
doi: 10.1007/s00030-018-0514-x. |
[18] |
W. Yan, M. Yang and J. Duan,
White noise driven Ostrovsky equation, J. Differential Equations, 267 (2019), 5701-5735.
doi: 10.1016/j.jde.2019.06.003. |
[1] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[2] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[3] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[4] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[5] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[6] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[7] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[8] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[11] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[12] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[15] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[16] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[17] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[18] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[19] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[20] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]