March  2021, 26(3): 1675-1710. doi: 10.3934/dcdsb.2020178

Finite element approximation of nonlocal dynamic fracture models

1. 

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

* Corresponding author: P. K. Jha

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number W911NF1610456

In this work we estimate the convergence rate for time stepping schemes applied to nonlocal dynamic fracture modeling. Here we use the nonlocal formulation given by the bond based peridynamic equation of motion. We begin by establishing the existence of $ H^2 $ peridynamic solutions over any finite time interval. For this model the gradients can become large and steep slopes appear and localize when the non-locality of the model tends to zero. In this treatment spatial approximation by finite elements are used. We consider the central-difference scheme for time discretization and linear finite elements for discretization in the spatial variable. The fully discrete scheme is shown to converge to the actual $ H^2 $ solution in the mean square norm at the rate $ C_t\Delta t +C_s h^2/\epsilon^2 $. Here $ h $ is the mesh size, $ \epsilon $ is the length scale of nonlocal interaction and $ \Delta t $ is the time step. The constants $ C_t $ and $ C_s $ are independent of $ \Delta t $, and $ h $. In the absence of nonlinearity a CFL like condition for the energy stability of the central difference time discretization scheme is developed. As an example we consider Plexiglass and compute constants in the a-priori error bound.

Citation: P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178
References:
[1]

A. AgwaiI. Guven and E. Madenci, Predicting crack propagation with peridynamics: A comparative study, International Journal of Fracture, 171 (2011), 65-78.  doi: 10.1007/s10704-011-9628-4.  Google Scholar

[2]

B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM Journal on Numerical Analysis, 52 (2014), 653-677.  doi: 10.1137/13092407X.  Google Scholar

[3]

B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217 (2011), 6498-6515.  doi: 10.1016/j.amc.2011.01.027.  Google Scholar

[4]

G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 13 (1976), 564-576.  doi: 10.1137/0713048.  Google Scholar

[5]

F. Bobaru and W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, International Journal of Fracture, 176 (2012), 215-222.  doi: 10.1007/s10704-012-9725-z.  Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3$^rd$ edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

H. Brezis, Analyse fonctionnelle, Théorie et applications, in Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[8]

Z. ChenD. Bakenhus and F. Bobaru, A constructive peridynamic kernel for elasticity, Computer Methods in Applied Mechanics and Engineering, 311 (2016), 356-373.  doi: 10.1016/j.cma.2016.08.012.  Google Scholar

[9]

K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion, Journal of the Mechanics and Physics of Solids, 105 (2017), 235-253.  doi: 10.1016/j.jmps.2017.05.002.  Google Scholar

[10]

K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, Journal of the Mechanics and Physics of Solids, 54 (2006), 1811-1842.  doi: 10.1016/j.jmps.2006.04.001.  Google Scholar

[11]

P. Diehl, R. Lipton and M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory., preprint, Institut für Numerische Simulation, (2016). Google Scholar

[12]

Q. DuL. Tian and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models, SIAM Journal on Numerical Analysis, 51 (2013), 1211-1234.  doi: 10.1137/120871638.  Google Scholar

[13]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[14]

E. Emmrich, R. B. Lehoucq and D. Puhst, Peridynamics: A nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI, Springer, Heidelberg, 2013, 45–65. doi: 10.1007/978-3-642-32979-1_3.  Google Scholar

[15]

J. T. FosterS. A. Silling and W. Chen, An energy based failure criterion for use with peridynamic states, International Journal for Multiscale Computational Engineering, 9 (2011), 675-688.  doi: 10.1615/IntJMultCompEng.2011002407.  Google Scholar

[16]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[17]

W. GerstleN. Sau and S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237 (2007), 1250-1258.  doi: 10.1016/j.nucengdes.2006.10.002.  Google Scholar

[18]

M. GhajariL. Iannucci and P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, 276 (2014), 431-452.  doi: 10.1016/j.cma.2014.04.002.  Google Scholar

[19]

M. J. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, Journal of Scientific Computing, 40 (2009), 257-272.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

Q. Guan and M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation, Numerical Methods for Partial Differential Equations, 31 (2015), 500-516.  doi: 10.1002/num.21931.  Google Scholar

[21]

Y. D. Ha and F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (2010), 229-244.  doi: 10.1007/s10704-010-9442-4.  Google Scholar

[22]

D. HuangG. Lu and P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, International Journal of Mechanical Sciences, 94 (2015), 111-122.  doi: 10.1016/j.ijmecsci.2015.02.018.  Google Scholar

[23]

P. K. Jha and R. Lipton, Numerical analysis of nonlocal fracture models in Hölder space, SIAM Journal on Numerical Analysis, 56 (2018), 906-941.  doi: 10.1137/17M1112236.  Google Scholar

[24]

P. K. Jha and R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics, International Journal for Numerical Methods in Engineering, 114 (2018), 1389-1410.  doi: 10.1002/nme.5791.  Google Scholar

[25]

S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation, Journal of Applied Mathematics and Computing, 40 (2012), 659-682.  doi: 10.1007/s12190-012-0558-8.  Google Scholar

[26]

Q. V. LeW. K. Chan and J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98 (2014), 547-567.  doi: 10.1002/nme.4642.  Google Scholar

[27]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[28]

R. Lipton, Cohesive dynamics and brittle fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[29]

R. Lipton, E. Said and P. K. Jha, Dynamic brittle fracture from nonlocal double-well potentials: A state-based model, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer, Cham, 2018, 1–27. doi: 10.1007/978-3-319-22977-5_33-1.  Google Scholar

[30]

R. LiptonS. Silling and R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics, Journal of Peridynamics and Nonlocal Modeling, 1 (2019), 122-130.  doi: 10.1007/s42102-019-00010-0.  Google Scholar

[31]

D. J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE), Vol. 9, Vancouver, British Columbia, Canada, 2010,209–217. doi: 10.1115/IMECE2010-40621.  Google Scholar

[32]

R. W. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43 (2007), 1169-1178.  doi: 10.1016/j.finel.2007.08.012.  Google Scholar

[33]

T. Mengesha and Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel, Discrete Contin. Dynam. Systems B, 18 (2013), 1415-1437.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

[34]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[35]

J. O'Grady and J. Foster, Peridynamic plates and flat shells: A non-ordinary, state-based model, International Journal of Solids and Structures, 51 (2014), 4572-4579.  doi: 10.1016/j.ijsolstr.2014.09.003.  Google Scholar

[36]

S. SillingO. WecknerE. Askari and F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture, 162 (2010), 219-227.  doi: 10.1007/s10704-010-9447-z.  Google Scholar

[37]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[38]

S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93 (2008), 13-37.  doi: 10.1007/s10659-008-9163-3.  Google Scholar

[39]

M. Taylor and D. J. Steigmann, A two-dimensional peridynamic model for thin plates, Mathematics and Mechanics of Solids, 20 (2015), 998-1010.  doi: 10.1177/1081286513512925.  Google Scholar

[40]

X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM Journal on Numerical Analysis, 52 (2014), 1641-1665.  doi: 10.1137/130942644.  Google Scholar

show all references

References:
[1]

A. AgwaiI. Guven and E. Madenci, Predicting crack propagation with peridynamics: A comparative study, International Journal of Fracture, 171 (2011), 65-78.  doi: 10.1007/s10704-011-9628-4.  Google Scholar

[2]

B. Aksoylu and Z. Unlu, Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces, SIAM Journal on Numerical Analysis, 52 (2014), 653-677.  doi: 10.1137/13092407X.  Google Scholar

[3]

B. Aksoylu and M. L. Parks, Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217 (2011), 6498-6515.  doi: 10.1016/j.amc.2011.01.027.  Google Scholar

[4]

G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 13 (1976), 564-576.  doi: 10.1137/0713048.  Google Scholar

[5]

F. Bobaru and W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, International Journal of Fracture, 176 (2012), 215-222.  doi: 10.1007/s10704-012-9725-z.  Google Scholar

[6]

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3$^rd$ edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

H. Brezis, Analyse fonctionnelle, Théorie et applications, in Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[8]

Z. ChenD. Bakenhus and F. Bobaru, A constructive peridynamic kernel for elasticity, Computer Methods in Applied Mechanics and Engineering, 311 (2016), 356-373.  doi: 10.1016/j.cma.2016.08.012.  Google Scholar

[9]

K. Dayal, Leading-order nonlocal kinetic energy in peridynamics for consistent energetics and wave dispersion, Journal of the Mechanics and Physics of Solids, 105 (2017), 235-253.  doi: 10.1016/j.jmps.2017.05.002.  Google Scholar

[10]

K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, Journal of the Mechanics and Physics of Solids, 54 (2006), 1811-1842.  doi: 10.1016/j.jmps.2006.04.001.  Google Scholar

[11]

P. Diehl, R. Lipton and M. Schweitzer, Numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory., preprint, Institut für Numerische Simulation, (2016). Google Scholar

[12]

Q. DuL. Tian and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models, SIAM Journal on Numerical Analysis, 51 (2013), 1211-1234.  doi: 10.1137/120871638.  Google Scholar

[13]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[14]

E. Emmrich, R. B. Lehoucq and D. Puhst, Peridynamics: A nonlocal continuum theory, in Meshfree Methods for Partial Differential Equations VI, Springer, Heidelberg, 2013, 45–65. doi: 10.1007/978-3-642-32979-1_3.  Google Scholar

[15]

J. T. FosterS. A. Silling and W. Chen, An energy based failure criterion for use with peridynamic states, International Journal for Multiscale Computational Engineering, 9 (2011), 675-688.  doi: 10.1615/IntJMultCompEng.2011002407.  Google Scholar

[16]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[17]

W. GerstleN. Sau and S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237 (2007), 1250-1258.  doi: 10.1016/j.nucengdes.2006.10.002.  Google Scholar

[18]

M. GhajariL. Iannucci and P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, 276 (2014), 431-452.  doi: 10.1016/j.cma.2014.04.002.  Google Scholar

[19]

M. J. Grote and D. Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, Journal of Scientific Computing, 40 (2009), 257-272.  doi: 10.1007/s10915-008-9247-z.  Google Scholar

[20]

Q. Guan and M. Gunzburger, Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation, Numerical Methods for Partial Differential Equations, 31 (2015), 500-516.  doi: 10.1002/num.21931.  Google Scholar

[21]

Y. D. Ha and F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (2010), 229-244.  doi: 10.1007/s10704-010-9442-4.  Google Scholar

[22]

D. HuangG. Lu and P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis, International Journal of Mechanical Sciences, 94 (2015), 111-122.  doi: 10.1016/j.ijmecsci.2015.02.018.  Google Scholar

[23]

P. K. Jha and R. Lipton, Numerical analysis of nonlocal fracture models in Hölder space, SIAM Journal on Numerical Analysis, 56 (2018), 906-941.  doi: 10.1137/17M1112236.  Google Scholar

[24]

P. K. Jha and R. Lipton, Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics, International Journal for Numerical Methods in Engineering, 114 (2018), 1389-1410.  doi: 10.1002/nme.5791.  Google Scholar

[25]

S. Karaa, Stability and convergence of fully discrete finite element schemes for the acoustic wave equation, Journal of Applied Mathematics and Computing, 40 (2012), 659-682.  doi: 10.1007/s12190-012-0558-8.  Google Scholar

[26]

Q. V. LeW. K. Chan and J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98 (2014), 547-567.  doi: 10.1002/nme.4642.  Google Scholar

[27]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[28]

R. Lipton, Cohesive dynamics and brittle fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[29]

R. Lipton, E. Said and P. K. Jha, Dynamic brittle fracture from nonlocal double-well potentials: A state-based model, in Handbook of Nonlocal Continuum Mechanics for Materials and Structures, Springer, Cham, 2018, 1–27. doi: 10.1007/978-3-319-22977-5_33-1.  Google Scholar

[30]

R. LiptonS. Silling and R. Lehoucq, Complex fracture nucleation and evolution with nonlocal elastodynamics, Journal of Peridynamics and Nonlocal Modeling, 1 (2019), 122-130.  doi: 10.1007/s42102-019-00010-0.  Google Scholar

[31]

D. J. Littlewood, Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, in Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE), Vol. 9, Vancouver, British Columbia, Canada, 2010,209–217. doi: 10.1115/IMECE2010-40621.  Google Scholar

[32]

R. W. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elements in Analysis and Design, 43 (2007), 1169-1178.  doi: 10.1016/j.finel.2007.08.012.  Google Scholar

[33]

T. Mengesha and Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel, Discrete Contin. Dynam. Systems B, 18 (2013), 1415-1437.  doi: 10.3934/dcdsb.2013.18.1415.  Google Scholar

[34]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[35]

J. O'Grady and J. Foster, Peridynamic plates and flat shells: A non-ordinary, state-based model, International Journal of Solids and Structures, 51 (2014), 4572-4579.  doi: 10.1016/j.ijsolstr.2014.09.003.  Google Scholar

[36]

S. SillingO. WecknerE. Askari and F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture, 162 (2010), 219-227.  doi: 10.1007/s10704-010-9447-z.  Google Scholar

[37]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[38]

S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93 (2008), 13-37.  doi: 10.1007/s10659-008-9163-3.  Google Scholar

[39]

M. Taylor and D. J. Steigmann, A two-dimensional peridynamic model for thin plates, Mathematics and Mechanics of Solids, 20 (2015), 998-1010.  doi: 10.1177/1081286513512925.  Google Scholar

[40]

X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM Journal on Numerical Analysis, 52 (2014), 1641-1665.  doi: 10.1137/130942644.  Google Scholar

Figure 1.  Two-point potential $ W^\epsilon(S,y - x) $ as a function of strain $ S $ for fixed $ y - x $
Figure 2.  Nonlocal force $ \partial_S W^\epsilon(S,y - x) $ as a function of strain $ S $ for fixed $ y - x $. Second derivative of $ W^\epsilon(S,y-x) $ is zero at $ \pm \bar{r}/\sqrt{|y -x|} $
Figure 3.  Geometry
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[3]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[6]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[7]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[13]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[14]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[15]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[16]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[19]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[20]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (120)
  • HTML views (293)
  • Cited by (0)

Other articles
by authors

[Back to Top]