
-
Previous Article
Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate
- DCDS-B Home
- This Issue
-
Next Article
Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection
Quasi-toric differential inclusions
1. | Department of Mathematics and Biomolecular Chemistry, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI 53706, USA |
2. | Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI 53706, USA |
Toric differential inclusions play a pivotal role in providing a rigorous interpretation of the connection between weak reversibility and the persistence of mass-action systems and polynomial dynamical systems. We introduce the notion of quasi-toric differential inclusions, which are strongly related to toric differential inclusions, but have a much simpler geometric structure. We show that every toric differential inclusion can be embedded into a quasi-toric differential inclusion and that every quasi-toric differential inclusion can be embedded into a toric differential inclusion. In particular, this implies that weakly reversible dynamical systems can be embedded into quasi-toric differential inclusions.
References:
[1] |
D. Anderson,
A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.
doi: 10.1137/11082631X. |
[2] |
D. Angeli, P. De Leenheer and E. Sontag,
A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Math. Biosci., 210 (2007), 598-618.
doi: 10.1016/j.mbs.2007.07.003. |
[3] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[4] |
J. Brunner and G. Craciun,
Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math, 78 (2018), 801-825.
doi: 10.1137/17M1133762. |
[5] |
G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv: 1501.02860.
doi: 1501.02860. |
[6] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[7] |
G. Craciun and A. Deshpande, Endotactic networks and toric differential inclusions, preprint, arXiv: 1906.08384.
doi: 1906.08384. |
[8] |
G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels,
Toric dynamical systems, J. Symb. Comp., 44 (2009), 1551-1565.
doi: 10.1016/j.jsc.2008.08.006. |
[9] |
G. Craciun, F. Nazarov and C. Pantea,
Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.
doi: 10.1137/100812355. |
[10] |
M. Feinberg, Lectures on chemical reaction networks, Notes of Lectures Given at the Mathematics Research Center, University of Wisconsin, (1979), 49 pp. Google Scholar |
[11] |
M. Feinberg,
Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.
doi: 10.1016/0009-2509(87)80099-4. |
[12] |
W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William
H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
doi: 10.1515/9781400882526. |
[13] |
M. Gopalkrishnan, E. Miller and A. Shiu,
A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.
doi: 10.1137/130928170. |
[14] |
C. M. Guldberg and P. Waage, Studies concerning affinity, J. Chem. Educ., 63 (1986), 1044.
doi: 10.1021/ed063p1044. |
[15] |
J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, (2003). Google Scholar |
[16] |
A. Kushnir and S. Liu, On linear transformations of intersections, ECON - Working Papers, 255 (2017), 17 pp. Google Scholar |
[17] |
C. Pantea,
On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.
doi: 10.1137/110840509. |
[18] |
R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970. |
[19] |
E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLOS Comput. Biol., 11 (2015), e1004012.
doi: 10.1371/journal.pcbi.1004012. |
[20] |
P. Yu and G. Craciun,
Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.
doi: 10.1002/ijch.201800003. |
[21] |
G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4613-8431-1. |
show all references
References:
[1] |
D. Anderson,
A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71 (2011), 1487-1508.
doi: 10.1137/11082631X. |
[2] |
D. Angeli, P. De Leenheer and E. Sontag,
A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks, Math. Biosci., 210 (2007), 598-618.
doi: 10.1016/j.mbs.2007.07.003. |
[3] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[4] |
J. Brunner and G. Craciun,
Robust persistence and permanence of polynomial and power law dynamical systems, SIAM J. Appl. Math, 78 (2018), 801-825.
doi: 10.1137/17M1133762. |
[5] |
G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, preprint, arXiv: 1501.02860.
doi: 1501.02860. |
[6] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAGA, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[7] |
G. Craciun and A. Deshpande, Endotactic networks and toric differential inclusions, preprint, arXiv: 1906.08384.
doi: 1906.08384. |
[8] |
G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels,
Toric dynamical systems, J. Symb. Comp., 44 (2009), 1551-1565.
doi: 10.1016/j.jsc.2008.08.006. |
[9] |
G. Craciun, F. Nazarov and C. Pantea,
Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73 (2013), 305-329.
doi: 10.1137/100812355. |
[10] |
M. Feinberg, Lectures on chemical reaction networks, Notes of Lectures Given at the Mathematics Research Center, University of Wisconsin, (1979), 49 pp. Google Scholar |
[11] |
M. Feinberg,
Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), 2229-2268.
doi: 10.1016/0009-2509(87)80099-4. |
[12] |
W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131, The William
H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.
doi: 10.1515/9781400882526. |
[13] |
M. Gopalkrishnan, E. Miller and A. Shiu,
A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Syst., 13 (2014), 758-797.
doi: 10.1137/130928170. |
[14] |
C. M. Guldberg and P. Waage, Studies concerning affinity, J. Chem. Educ., 63 (1986), 1044.
doi: 10.1021/ed063p1044. |
[15] |
J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, (2003). Google Scholar |
[16] |
A. Kushnir and S. Liu, On linear transformations of intersections, ECON - Working Papers, 255 (2017), 17 pp. Google Scholar |
[17] |
C. Pantea,
On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44 (2012), 1636-1673.
doi: 10.1137/110840509. |
[18] |
R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970. |
[19] |
E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLOS Comput. Biol., 11 (2015), e1004012.
doi: 10.1371/journal.pcbi.1004012. |
[20] |
P. Yu and G. Craciun,
Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry, 58 (2018), 733-741.
doi: 10.1002/ijch.201800003. |
[21] |
G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4613-8431-1. |








[1] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[2] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[3] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[4] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[5] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[6] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[7] |
Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020032 |
[8] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[11] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[12] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[13] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[14] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
[15] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[16] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[17] |
Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082 |
[18] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[19] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[20] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]