
-
Previous Article
A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction
- DCDS-B Home
- This Issue
-
Next Article
The effect of surface pattern property on the advancing motion of three-dimensional droplets
Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters
1. | Department of Mathematics, University of Mentouri Constantine 1, 25000, Algeria |
2. | Department of Sciences and Technology, Mathematics and their Interactions Laboratory, University of Mila, 43000, Algeria |
This paper proposes a new scheme generalized hybrid projective synchronization for two different chaotic systems using adaptive control, where the master and slave systems do not necessarily have the same number of uncertain parameters. In this method the master system is synchronized by the sum of hybrid state variables for the slave system. Based on Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is proposed, This method is also applicable if the master and slave systems are identical. As example the generalized hybrid projective synchronization between Vaidyanathan and Zeraoulia chaotic systems are discussed. Numerical simulation are provided to demonstrate the effectiveness of the proposed method.
References:
[1] |
E. N. Lorenz,
Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[2] |
O. E. Rössler,
An equation for continuous chaos, Physics Letters A, 57 (1976), 397-398.
|
[3] |
J. C. Sprott,
Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.
doi: 10.1103/PhysRevE.50.R647. |
[4] |
J. Lü and G. Chen,
A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2002), 659-661.
doi: 10.1142/S0218127402004620. |
[5] |
Z. Elhadj, Analysis of a new three-dimensional quadratic chaotic system, Radioengineering, 17 (2008), 9 pp. Google Scholar |
[6] |
M.-S. Abdelouahab and N.-E. Hamri,
A new chaotic attractor from hybrid optical bistable system, Nonlinear Dynamics, 67 (2012), 457-463.
doi: 10.1007/s11071-011-9994-5. |
[7] |
S.-J. Prakash and R.-B. Krishna, A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems, Nonlinear Dynamics, 93 (2018), 1121-1148. Google Scholar |
[8] |
Ü. Çavuşoǧlu, S. Panahi, A. Akgül, S. Jafari and S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: Analog circuit realization and image encryption, Analog Integrated Circuits and Signal Processing, 98 (2019), 85-99. Google Scholar |
[9] |
L. Philippe, S. John and A. N. Jordan, Chaos in continuously monitored quantum systems: An optimal-path approach, Physical Review A, 98 (2018), 012141. Google Scholar |
[10] |
P. Sadeghi, S. Panahi, B. Hatef, S. Jafari and J. C. Sprott,
A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112 (2018), 44-51.
doi: 10.1016/j.chaos.2018.04.029. |
[11] |
K. Uǧur Erkin, S. Çiçek and Y. Uyaroǧlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, Journal of Circuits, Systems and Computers, 27 (2018), 1850057.
doi: 10.1109/81.956024. |
[12] |
D. Ali, U. Yılmaz and A. T. Özcerit, A novel chaotic system for secure communication applications, Information Technology and Control, 44 (2015), 271-278. Google Scholar |
[13] |
T. Yamada and H. Fujisaka,
Stability theory of synchronized motion in coupled oscillator systems. II: The mapping approach, Progress of Theoretical Physics, 70 (1983), 1240-1248.
doi: 10.1143/PTP.70.1240. |
[14] |
L. M. Pecora and T. L. Carroll,
Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.
doi: 10.1103/PhysRevLett.64.821. |
[15] |
M. S. Abd-Elouahab, N. Hamri and J. Wang, Chaos control of afractional-order financial system, Mathematical Problems in Engineering, 2010 (2010).
doi: 10.1155/2010/270646. |
[16] |
D. Chen, R. Zhang, M. Xiaoyi and S. Liu,
Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69 (2012), 35-55.
doi: 10.1007/s11071-011-0244-7. |
[17] |
A. Senouci and A. Boukabou,
Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model, Mathematics and Computers in Simulation, 105 (2014), 62-78.
doi: 10.1016/j.matcom.2014.05.007. |
[18] |
K. Ayub, B. Mridula and I. Aysha,
Multi-switching compound synchronization of four different chaotic systems via active backstepping method, International Journal of Dynamics and Control, 6 (2018), 1126-1135.
doi: 10.1007/s40435-017-0365-z. |
[19] |
G. Li and S. Chunxiang, Adaptive neural network backstepping control of fractional-order Chua–Hartley chaotic system, Advances in Difference Equations, 2019 (2019), 148.
doi: 10.1186/s13662-019-2099-z. |
[20] |
L. Jianquan and C. Jinde, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005), 043901.
doi: 10.1063/1.2089207. |
[21] |
G. Zheng-Ming and C. Chien-Cheng,
Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20 (2004), 639-647.
doi: 10.1016/j.chaos.2004.11.032. |
[22] |
S. Wen, Z. Zeng, T. Huang and Q. Meng,
Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493-1502.
doi: 10.1109/TNNLS.2014.2387355. |
[23] |
Z. Xuebing and Z. Honglan,
Anti-synchronization of two different hyperchaotic systems via active and adaptive control, International Journal of Nonlinear Science, 6 (2008), 216-223.
|
[24] |
L. Chengren, L. Ling, Z. Guannan, L. Gang, T. Jing, G. Jiajia and W. Zhouyang,
Projective synchronization of uncertain scale-free network based on modified sliding mode control technique, Physica A: Statistical Mechanics and its Applications, 473 (2017), 511-521.
doi: 10.1016/j.physa.2017.01.040. |
[25] |
R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82 (1999), 3042. Google Scholar |
[26] |
G.-H. Li,
Modified projective synchronization of chaotic system, Chaos, Solitons Fractals, 32 (2007), 1786-1790.
doi: 10.1016/j.chaos.2005.12.009. |
[27] |
J. Sun, J. Guo, C. Yang, A. Zheng and X. Zhang,
Adaptive generalized hybrid function projective dislocated synchronization of new four-dimentional uncertain chaotic systems, Applied Mathematics and Computation, 252 (2015), 304-314.
doi: 10.1016/j.amc.2014.12.004. |
[28] |
J.Chen, J. Sun, M. Chi and C. Xin-Ming, A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters, Abstract and Applied Analysis, 2014 (2014).
doi: 10.1155/2014/675840. |
[29] |
M. Krsti, K. Ioannis and V. Petar, Nonlinear and Adaptive Control Design, {Wiley New York}, (1995), 576. Google Scholar |
[30] |
S. Vaidyanathan, A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities, Far East J. Math. Sci, 84 (2014), 219-226. Google Scholar |
[31] |
W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967. |
show all references
References:
[1] |
E. N. Lorenz,
Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[2] |
O. E. Rössler,
An equation for continuous chaos, Physics Letters A, 57 (1976), 397-398.
|
[3] |
J. C. Sprott,
Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.
doi: 10.1103/PhysRevE.50.R647. |
[4] |
J. Lü and G. Chen,
A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2002), 659-661.
doi: 10.1142/S0218127402004620. |
[5] |
Z. Elhadj, Analysis of a new three-dimensional quadratic chaotic system, Radioengineering, 17 (2008), 9 pp. Google Scholar |
[6] |
M.-S. Abdelouahab and N.-E. Hamri,
A new chaotic attractor from hybrid optical bistable system, Nonlinear Dynamics, 67 (2012), 457-463.
doi: 10.1007/s11071-011-9994-5. |
[7] |
S.-J. Prakash and R.-B. Krishna, A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems, Nonlinear Dynamics, 93 (2018), 1121-1148. Google Scholar |
[8] |
Ü. Çavuşoǧlu, S. Panahi, A. Akgül, S. Jafari and S. Kaçar, A new chaotic system with hidden attractor and its engineering applications: Analog circuit realization and image encryption, Analog Integrated Circuits and Signal Processing, 98 (2019), 85-99. Google Scholar |
[9] |
L. Philippe, S. John and A. N. Jordan, Chaos in continuously monitored quantum systems: An optimal-path approach, Physical Review A, 98 (2018), 012141. Google Scholar |
[10] |
P. Sadeghi, S. Panahi, B. Hatef, S. Jafari and J. C. Sprott,
A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112 (2018), 44-51.
doi: 10.1016/j.chaos.2018.04.029. |
[11] |
K. Uǧur Erkin, S. Çiçek and Y. Uyaroǧlu, Secure communication with chaos and electronic circuit design using passivity-based synchronization, Journal of Circuits, Systems and Computers, 27 (2018), 1850057.
doi: 10.1109/81.956024. |
[12] |
D. Ali, U. Yılmaz and A. T. Özcerit, A novel chaotic system for secure communication applications, Information Technology and Control, 44 (2015), 271-278. Google Scholar |
[13] |
T. Yamada and H. Fujisaka,
Stability theory of synchronized motion in coupled oscillator systems. II: The mapping approach, Progress of Theoretical Physics, 70 (1983), 1240-1248.
doi: 10.1143/PTP.70.1240. |
[14] |
L. M. Pecora and T. L. Carroll,
Synchronization in chaotic systems, Physical Review Letters, 64 (1990), 821-824.
doi: 10.1103/PhysRevLett.64.821. |
[15] |
M. S. Abd-Elouahab, N. Hamri and J. Wang, Chaos control of afractional-order financial system, Mathematical Problems in Engineering, 2010 (2010).
doi: 10.1155/2010/270646. |
[16] |
D. Chen, R. Zhang, M. Xiaoyi and S. Liu,
Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics, 69 (2012), 35-55.
doi: 10.1007/s11071-011-0244-7. |
[17] |
A. Senouci and A. Boukabou,
Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model, Mathematics and Computers in Simulation, 105 (2014), 62-78.
doi: 10.1016/j.matcom.2014.05.007. |
[18] |
K. Ayub, B. Mridula and I. Aysha,
Multi-switching compound synchronization of four different chaotic systems via active backstepping method, International Journal of Dynamics and Control, 6 (2018), 1126-1135.
doi: 10.1007/s40435-017-0365-z. |
[19] |
G. Li and S. Chunxiang, Adaptive neural network backstepping control of fractional-order Chua–Hartley chaotic system, Advances in Difference Equations, 2019 (2019), 148.
doi: 10.1186/s13662-019-2099-z. |
[20] |
L. Jianquan and C. Jinde, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005), 043901.
doi: 10.1063/1.2089207. |
[21] |
G. Zheng-Ming and C. Chien-Cheng,
Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20 (2004), 639-647.
doi: 10.1016/j.chaos.2004.11.032. |
[22] |
S. Wen, Z. Zeng, T. Huang and Q. Meng,
Lag synchronization of switched neural networks via neural activation function and applications in image encryption, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1493-1502.
doi: 10.1109/TNNLS.2014.2387355. |
[23] |
Z. Xuebing and Z. Honglan,
Anti-synchronization of two different hyperchaotic systems via active and adaptive control, International Journal of Nonlinear Science, 6 (2008), 216-223.
|
[24] |
L. Chengren, L. Ling, Z. Guannan, L. Gang, T. Jing, G. Jiajia and W. Zhouyang,
Projective synchronization of uncertain scale-free network based on modified sliding mode control technique, Physica A: Statistical Mechanics and its Applications, 473 (2017), 511-521.
doi: 10.1016/j.physa.2017.01.040. |
[25] |
R. Mainieri and J. Rehacek, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82 (1999), 3042. Google Scholar |
[26] |
G.-H. Li,
Modified projective synchronization of chaotic system, Chaos, Solitons Fractals, 32 (2007), 1786-1790.
doi: 10.1016/j.chaos.2005.12.009. |
[27] |
J. Sun, J. Guo, C. Yang, A. Zheng and X. Zhang,
Adaptive generalized hybrid function projective dislocated synchronization of new four-dimentional uncertain chaotic systems, Applied Mathematics and Computation, 252 (2015), 304-314.
doi: 10.1016/j.amc.2014.12.004. |
[28] |
J.Chen, J. Sun, M. Chi and C. Xin-Ming, A novel scheme adaptive hybrid dislocated synchronization for two identical and different memristor chaotic oscillator systems with uncertain parameters, Abstract and Applied Analysis, 2014 (2014).
doi: 10.1155/2014/675840. |
[29] |
M. Krsti, K. Ioannis and V. Petar, Nonlinear and Adaptive Control Design, {Wiley New York}, (1995), 576. Google Scholar |
[30] |
S. Vaidyanathan, A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities, Far East J. Math. Sci, 84 (2014), 219-226. Google Scholar |
[31] |
W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967. |



[1] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[2] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[3] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[4] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[5] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[6] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[7] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[8] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[9] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[10] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[11] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[12] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[13] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[14] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[15] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[16] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[17] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[18] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[19] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[20] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]