
-
Previous Article
Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion
- DCDS-B Home
- This Issue
-
Next Article
Properties of basins of attraction for planar discrete cooperative maps
A nonisothermal thermodynamical model of liquid-vapor interaction with metastability
1. | Université de Nantes & CNRS UMR 6629, Laboratoire de Mathematiques Jean Leray, 2, rue de la Houssinière, BP 92208, F-44322 Nantes Cedex 3, France |
2. | Université d'Orléans, Université de Tours & CNRS UMR 7013, Institut Denis Poisson, Rue de Chartres, BP 6759, F-45067 Orléans Cedex 2, France |
The paper concerns the construction of a compressible liquid-vapor relaxation model which is able to capture the metastable states of the non isothermal van der Waals model as well as saturation states. Starting from the Gibbs formalism, we propose a dynamical system which complies with the second law of thermodynamics. Numerical simulations illustrate the expected behaviour of metastable states: an initial metastable condition submitted to a certain perturbation may stay in the metastable state or reaches a saturation state. The dynamical system is then coupled to the dynamics of the compressible fluid using an Euler set of equations supplemented by convection equations on the fractions of volume, mass and energy of one of the phases.
References:
[1] |
M. R. Baer and J. W. Nunziato,
A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials, Int. J. Multiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[2] |
D. W. Ball, Physical Chemistry, Cengage Learning, 2002. Google Scholar |
[3] |
T. Barberon and P. Helluy,
Finite volume simulation of cavitating flows, Computers and Fluids, 34 (2005), 832-858.
doi: 10.1016/j.compfluid.2004.06.004. |
[4] |
J. Bartak,
A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water, Int. J. Multiph. Flow, 16 (1990), 789-98.
doi: 10.1016/0301-9322(90)90004-3. |
[5] |
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2$^{nd}$ edition, Wiley and Sons, 1985.
doi: 10.1119/1.19071. |
[6] |
F. Caro, Modélisation et simulation numérique des transitions de phase liquide vapeur, PhD thesis, Ecole Polytechnique X, 2004. Google Scholar |
[7] |
M. De Lorenzo, Modelling and numerical simulation of metastable two-phase flows, PhD thesis, Université Paris-Saclay, 2018. Google Scholar |
[8] |
M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz,
Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations, Int. J. Multiph. Flow, 95 (2017), 199-219.
doi: 10.1016/j.ijmultiphaseflow.2017.06.001. |
[9] |
M. De Lorenzo, P. Lafon and M. Pelanti,
A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures, J. Comput. Phys., 379 (2019), 279-308.
doi: 10.1016/j.jcp.2018.12.002. |
[10] |
G. Faccanoni, S. Kokh and G. Allaire,
Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM Math. Model. Numer. Anal., 46 (2012), 1029-1054.
doi: 10.1051/m2an/2011069. |
[11] |
S. Fechter, C.-D. Munz, C. Rohde and C. Zeiler,
A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension, J. Comput. Phys., 336 (2017), 347-374.
doi: 10.1016/j.jcp.2017.02.001. |
[12] |
T. Gallouët, J.-M. Hérard and N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 39 (2002), 1073–1138.
doi: 10.1002/fld.346. |
[13] |
S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case, Technical Report, EDF, (2014), H-I83-2014-0276-EN. Google Scholar |
[14] |
H. Ghazi, Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables, PhD thesis, 2018. Google Scholar |
[15] |
H. Ghazi, F. James and H. Mathis,
Vapour-liquid phase transition and metastability, ESAIM: Proceedings and Surveys, 66 (2019), 22-41.
doi: 10.1051/proc/201966002. |
[16] |
J. W. Gibbs, The Collected Works of J. Willard Gibbs, vol I: Thermodynamics, Yale University Press, 1948.
doi: 10.2307/3609900. |
[17] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118 Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[18] |
P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model, Int. J. Finite Vol., 24 (2015). |
[19] |
P. Helluy and H. Mathis,
Pressure laws and fast Legendre transform, Math. Models Methods Appl. Sci., 21 (2011), 745-775.
doi: 10.1142/S0218202511005209. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, in Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-56468-0. |
[21] |
O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows, Int. J. Finite Vol., 11 (2014), 37 pp. |
[22] |
O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model, Comput. & Fluids, 152 (2017), 88–103, 2017.
doi: 10.1016/j.compfluid.2017.04.007. |
[23] |
O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM: Proceedings and Surveys, (2019), 84 – 108.
doi: 10.1051/proc/201966005. |
[24] |
F. James and H. Mathis,
A relaxation model for liquid-vapor phase change with metastability, Commun. Math. Sci., 14 (2016), 2179-2214.
doi: 10.4310/CMS.2016.v14.n8.a4. |
[25] |
A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart, Two-phase modelling of DDT in granular materials: Reduced equations, Phys. Fluids, 13 (2001), 3002-3024. Google Scholar |
[26] |
L. D. Landau and E. M. Lifshitz, Statistical Physics: V. 5. Course of Theoretical Physics, Pergamon Press, 1969. |
[27] |
B. J. Lee, E. F. Toro, C. E. Castro and N. Nikiforakis,
Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state, J. Comput. Phys., 246 (2013), 165-183.
doi: 10.1016/j.jcp.2013.03.046. |
[28] |
R. G. Mortimer, Physical Chemistry, Academic Press Elsevier, 2008. Google Scholar |
[29] |
D. Y. Peng and D. B. Robinson,
A new two-constant equation of state, Industrial and Engineering Chemistry: Fundamentals, 15 (1976), 59-64.
doi: 10.1021/i160057a011. |
[30] |
R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. |
[31] |
R. Saurel, F. Petitpas and R. Abgrall,
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows, J. Fluid Mech., 607 (2008), 313-350.
doi: 10.1017/S0022112008002061. |
[32] |
N. Shamsundarl and J. H. Lienhard,
Equations of state and spinodal lines–A review, Nuclear Engineering and Design, 141 (1993), 269-287.
doi: 10.1016/0029-5493(93)90106-J. |
[33] |
G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 27 (1972), 1197-1203. Google Scholar |
[34] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3$^{rd}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/b79761. |
[35] |
A. Zein, M. Hantke and G. Warnecke,
Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comp. Phys., 229 (2010), 1964-2998.
doi: 10.1016/j.jcp.2009.12.026. |
show all references
References:
[1] |
M. R. Baer and J. W. Nunziato,
A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials, Int. J. Multiphase Flow, 12 (1986), 861-889.
doi: 10.1016/0301-9322(86)90033-9. |
[2] |
D. W. Ball, Physical Chemistry, Cengage Learning, 2002. Google Scholar |
[3] |
T. Barberon and P. Helluy,
Finite volume simulation of cavitating flows, Computers and Fluids, 34 (2005), 832-858.
doi: 10.1016/j.compfluid.2004.06.004. |
[4] |
J. Bartak,
A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water, Int. J. Multiph. Flow, 16 (1990), 789-98.
doi: 10.1016/0301-9322(90)90004-3. |
[5] |
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2$^{nd}$ edition, Wiley and Sons, 1985.
doi: 10.1119/1.19071. |
[6] |
F. Caro, Modélisation et simulation numérique des transitions de phase liquide vapeur, PhD thesis, Ecole Polytechnique X, 2004. Google Scholar |
[7] |
M. De Lorenzo, Modelling and numerical simulation of metastable two-phase flows, PhD thesis, Université Paris-Saclay, 2018. Google Scholar |
[8] |
M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz,
Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations, Int. J. Multiph. Flow, 95 (2017), 199-219.
doi: 10.1016/j.ijmultiphaseflow.2017.06.001. |
[9] |
M. De Lorenzo, P. Lafon and M. Pelanti,
A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures, J. Comput. Phys., 379 (2019), 279-308.
doi: 10.1016/j.jcp.2018.12.002. |
[10] |
G. Faccanoni, S. Kokh and G. Allaire,
Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM Math. Model. Numer. Anal., 46 (2012), 1029-1054.
doi: 10.1051/m2an/2011069. |
[11] |
S. Fechter, C.-D. Munz, C. Rohde and C. Zeiler,
A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension, J. Comput. Phys., 336 (2017), 347-374.
doi: 10.1016/j.jcp.2017.02.001. |
[12] |
T. Gallouët, J.-M. Hérard and N. Seguin, Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 39 (2002), 1073–1138.
doi: 10.1002/fld.346. |
[13] |
S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case, Technical Report, EDF, (2014), H-I83-2014-0276-EN. Google Scholar |
[14] |
H. Ghazi, Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables, PhD thesis, 2018. Google Scholar |
[15] |
H. Ghazi, F. James and H. Mathis,
Vapour-liquid phase transition and metastability, ESAIM: Proceedings and Surveys, 66 (2019), 22-41.
doi: 10.1051/proc/201966002. |
[16] |
J. W. Gibbs, The Collected Works of J. Willard Gibbs, vol I: Thermodynamics, Yale University Press, 1948.
doi: 10.2307/3609900. |
[17] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118 Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[18] |
P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model, Int. J. Finite Vol., 24 (2015). |
[19] |
P. Helluy and H. Mathis,
Pressure laws and fast Legendre transform, Math. Models Methods Appl. Sci., 21 (2011), 745-775.
doi: 10.1142/S0218202511005209. |
[20] |
J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, in Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-56468-0. |
[21] |
O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows, Int. J. Finite Vol., 11 (2014), 37 pp. |
[22] |
O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model, Comput. & Fluids, 152 (2017), 88–103, 2017.
doi: 10.1016/j.compfluid.2017.04.007. |
[23] |
O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM: Proceedings and Surveys, (2019), 84 – 108.
doi: 10.1051/proc/201966005. |
[24] |
F. James and H. Mathis,
A relaxation model for liquid-vapor phase change with metastability, Commun. Math. Sci., 14 (2016), 2179-2214.
doi: 10.4310/CMS.2016.v14.n8.a4. |
[25] |
A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart, Two-phase modelling of DDT in granular materials: Reduced equations, Phys. Fluids, 13 (2001), 3002-3024. Google Scholar |
[26] |
L. D. Landau and E. M. Lifshitz, Statistical Physics: V. 5. Course of Theoretical Physics, Pergamon Press, 1969. |
[27] |
B. J. Lee, E. F. Toro, C. E. Castro and N. Nikiforakis,
Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state, J. Comput. Phys., 246 (2013), 165-183.
doi: 10.1016/j.jcp.2013.03.046. |
[28] |
R. G. Mortimer, Physical Chemistry, Academic Press Elsevier, 2008. Google Scholar |
[29] |
D. Y. Peng and D. B. Robinson,
A new two-constant equation of state, Industrial and Engineering Chemistry: Fundamentals, 15 (1976), 59-64.
doi: 10.1021/i160057a011. |
[30] |
R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. |
[31] |
R. Saurel, F. Petitpas and R. Abgrall,
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows, J. Fluid Mech., 607 (2008), 313-350.
doi: 10.1017/S0022112008002061. |
[32] |
N. Shamsundarl and J. H. Lienhard,
Equations of state and spinodal lines–A review, Nuclear Engineering and Design, 141 (1993), 269-287.
doi: 10.1016/0029-5493(93)90106-J. |
[33] |
G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 27 (1972), 1197-1203. Google Scholar |
[34] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3$^{rd}$ edition, Springer-Verlag, Berlin, 2009.
doi: 10.1007/b79761. |
[35] |
A. Zein, M. Hantke and G. Warnecke,
Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comp. Phys., 229 (2010), 1964-2998.
doi: 10.1016/j.jcp.2009.12.026. |



















[1] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[2] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[3] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[4] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[5] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[6] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[7] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[8] |
Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 |
[9] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[10] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[11] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[12] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[13] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[14] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[15] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[16] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[17] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[18] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[19] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[20] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]