doi: 10.3934/dcdsb.2020184

A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems

1. 

School of Mathematics and Statistics, and Key Laboratory of Applied Mathematics and Complex Systems (Gansu Province), Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

* Corresponding author: Lunji Song

Received  November 2019 Revised  February 2020 Published  June 2020

In this article, we propose a new over-penalized weak Galerkin (OPWG) method with a stabilizer for second-order elliptic problems. This method employs double-valued functions on interior edges of elements instead of single-valued ones and elements $ (\mathbb{P}_{k}, \mathbb{P}_{k}, [\mathbb{P}_{k-1}]^{d}) $, or $ (\mathbb{P}_{k}, \mathbb{P}_{k-1}, [\mathbb{P}_{k-1}]^{d}) $, with dimensions of space $ d = 2, \; 3 $. The method is absolutely stable with a constant penalty parameter, which is independent of mesh size and shape-regularity. We prove that for quasi-uniform triangulations, condition numbers of the stiffness matrices arising from the OPWG method are $ O(h^{-\beta_{0}(d-1)-1}) $, $ \beta_{0} $ being the penalty exponent. Therefore we introduce a new mini-block diagonal preconditioner, which is proven to be theoretically and numerically effective in reducing the condition numbers of stiffness matrices to the magnitude of $ O(h^{-2}) $. Optimal error estimates in a discrete $ H^1 $-norm and $ L^2 $-norm are established, from which the optimal penalty exponent can be easily chosen. Several numerical examples are presented to demonstrate flexibility, effectiveness and reliability of the new method.

Citation: Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020184
References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

show all references

References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

F. BrezziJ. Douglas Jr. and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.  doi: 10.1007/BF01389710.  Google Scholar

[3]

B. Li and X. Xie, A two-level algorithm for the weak Galerkin discretization of diffusion problems, J. Comput. Appl. Math., 287 (2015), 179-195.  doi: 10.1016/j.cam.2015.03.043.  Google Scholar

[4]

K. LiuL. Song and S. Zhou, An over-penalized weak Galerkin method for second-order elliptic problems, J. Comput. Math., 36 (2018), 866-880.  doi: 10.4208/jcm.1705-m2016-0744.  Google Scholar

[5]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algor., 63 (2012), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[6]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[7]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[8]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[10]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[11]

A. Quarteroni and V. Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[12]

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Galligani I., Magenes E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606, Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/BFb0064470.  Google Scholar

[13]

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: doi.org/10.1137/1.9780898717440.  Google Scholar

[14]

L. SongK. Liu and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, J. Sci. Comput., 71 (2017), 195-218.  doi: 10.1007/s10915-016-0296-4.  Google Scholar

[15]

L. SongS. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128 (2018), 65-80.  doi: 10.1016/j.apnum.2018.01.021.  Google Scholar

[16]

C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68 (2014), 2314-2330.  doi: 10.1016/j.camwa.2014.03.021.  Google Scholar

[17]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-016-9471-2.  Google Scholar

[20]

Q. ZhaiX. YeR. Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74 (2017), 2243-2252.  doi: 10.1016/j.camwa.2017.07.009.  Google Scholar

Figure 1.  Initial mesh (Left) and the OPWG ($ \beta_{0} = 3 $) solution on the finest mesh (Right) for Example 2
Figure 2.  Convergence rates of the OPWG ($ \beta_{0} = 3 $) solutions against degree of freedoms for different values of $ \alpha $ in Example 2. (Left) $ \alpha = 0.5 $; (Right) $ \alpha = 0.25 $
Table 1.  WG method with element $ (\mathbb{P}_k, \mathbb{P}_{k}, \mathbb{P}_{k-1}^2) $ for Example 1
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
$ h $ $ k=1 $ $ k=2 $
$ ||| e_{h}||| $ $ \|e_{0}\| $ $ ||| e_{h}||| $ $ \|e_{0}\| $
1/8 9.9173e-01 5.3131e-02 7.8508e-02 3.2464e-03
1/16 4.9588e-01 1.3272e-02 1.9677e-02 4.0611e-04
1/32 2.4793e-01 3.3169e-03 4.9226e-03 5.0761e-05
1/64 1.2396e-01 8.2914e-04 1.2309e-03 6.3445e-06
Rate. 1.0001 2.0001 1.9997 3.0001
Table 2.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 1, 2, 3, 4 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=1 $ $ \beta_0=2 $
$ 1/8 $ 1.3258e+00 7.4931e-02 1.0550e+00 5.9839e-02
$ 1/16 $ 1.0306e+00 3.4203e-02 5.6097e-01 1.5700e-02
$ 1/32 $ 9.4663e-01 2.5074e-02 3.1098e-01 4.3112e-03
$ 1/64 $ 9.2663e-01 2.3053e-02 1.8215e-01 1.2815e-03
Rate. 0.0308 0.1212 0.7717 1.7503
$ \beta_0=3 $ $ \beta_0=4 $
$ 1/8 $ 1.0019e+00 5.7508e-02 9.9304e-01 5.7135e-02
$ 1/16 $ 5.0137e-01 1.4381e-02 4.9628e-01 1.4278e-02
$ 1/32 $ 2.5075e-01 3.5954e-03 2.4804e-01 3.5682e-03
$ 1/64 $ 1.2539e-01 8.9887e-04 1.2399e-01 8.9191e-04
Rate. 0.9998 2. 1.0003 2.0002
Table 3.  OPWG with $ (\mathbb{P}_2, \mathbb{P}_2, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 2, 3, 4, 5 $ for Example 1
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ $ ||| e_h ||| $ $ \|e_0\| $
$ \beta_0=2 $ $ \beta_0=3 $
$ 1/8 $ 1.7917e+00 1.0256e-01 8.4595e-01 2.0487e-02
$ 1/16 $ 1.4060e+00 5.7784e-02 4.4264e-01 5.3334e-03
$ 1/32 $ 1.0580e+00 3.0997e-02 2.2464e-01 1.3530e-03
$ 1/64 $ 7.7468e-01 1.6118e-02 1.1291e-01 3.4023e-04
Rate. 0.4497 0.9435 0.9924 1.9916
$ \beta_0=4 $ $ \beta_0=5 $
$ 1/8 $ 3.6348e-01 4.6229e-03 1.6594e-01 3.2492e-03
$ 1/16 $ 1.2933e-01 5.9131e-04 4.1839e-02 4.0604e-04
$ 1/32 $ 4.5730e-02 7.4938e-05 1.0494e-02 5.0757e-05
$ 1/64 $ 1.6162e-02 9.4394e-06 2.6274e-03 6.3443e-06
Rate. 1.5005 2.9889 1.9979 3.0001
Table 4.  Comparison of condition number with optimal penalty parameters
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
$ h $ Without preconditioning Block-diagonal preconditioning
$ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $ $ k=1, \beta_{0}=3 $ $ k=2, \beta_{0}=5 $
1/4 1.8272e+04 2.1075e+04 2.6265e+02 4.3079e+04
1/8 1.6957e+05 6.9533e+05 1.0135e+03 1.9257e+05
1/16 2.1585e+06 3.4759e+07 4.0481e+03 8.0866e+05
1/32 3.2471e+07 2.0653e+09 1.6228e+04 3.3427e+06
1/64 5.1218e+08 1.2974e+11 6.4995e+04 1.3570e+07
Order -3.9794 -5.9731 -2.0018 -2.0213
Table 5.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_1, \mathbb{P}_0, \mathbb{P}_{0}^{2}) $ and $ \beta_0 = 3 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.5226e+00 8.7459e-02 6.6551e+03 2.1055e+03
$ 1/16 $ 7.7405e-01 2.2035e-02 8.1739e+04 7.9132e+03
$ 1/32 $ 3.8921e-01 5.5253e-03 1.2109e+06 3.1176e+04
$ 1/64 $ 1.9499e-01 1.3832e-03 1.9007e+07 1.2425e+05
Rate. 0.9971 1.9980 -3.9724 -1.9947
Table 6.  Errors and condition numbers for Example 1 with $ (\mathbb{P}_2, \mathbb{P}_1, \mathbb{P}_{1}^{2}) $ and $ \beta_0 = 5 $
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
$ h $ $ ||| e_h ||| $ $ \|e_0\| $ Cond. Pre. Cond.
$ 1/8 $ 1.6622e-01 3.3354e-03 3.5419e+05 1.0229e+05
$ 1/16 $ 4.1912e-02 4.1731e-04 1.9810e+07 4.2176e+05
$ 1/32 $ 1.0513e-02 5.2184e-05 1.2227e+09 1.7166e+06
$ 1/64 $ 2.6321e-03 6.5231e-06 7.7586e+10 6.9742e+06
Rate. 1.9979 3.0000 -5.9877 -2.0225
Table 7.  OPWG with $ (\mathbb{P}_1, \mathbb{P}_1, \mathbb{P}_{0}^{2}) $ and optimal penalty parameter for Example 2
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
dof. $ \alpha=0.5 $ $ \alpha=0.25 $ Condition Number
$ ||| e_h ||| $ $ \|e_{0}\| $ $ ||| e_h ||| $ $ \|e_{0}\| $ Cond. Pre. Cond.
2.0880e+3 4.2303e-1 7.0060e-2 9.6614e-1 7.3906e-2 1.7335e+6 1.1357e+3
8.3520e+3 2.7461e-1 1.8365e-2 7.8292e-1 2.2116e-2 2.4882e+7 4.5578e+3
3.3408e+4 1.8503e-1 4.7471e-3 6.4655e-1 7.3419e-3 3.8905e+8 1.8270e+4
1.3363e+5 1.3025e-1 1.2371e-3 5.5838e-1 2.8274e-3 6.1854e+9 7.3140e+4
5.3453e+5 9.2125e-2 3.2954e-4 4.6994e-1 1.1394e-3 9.8828e+10 2.9267e+5
[1]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[2]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[5]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[6]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[7]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[8]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[9]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[14]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[16]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[20]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (45)
  • HTML views (250)
  • Cited by (0)

Other articles
by authors

[Back to Top]