
-
Previous Article
Properties of basins of attraction for planar discrete cooperative maps
- DCDS-B Home
- This Issue
-
Next Article
On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions
Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations
1. | MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China |
2. | Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore |
In this paper, we investigate an accurate and efficient method for nonlinear Maxwell's equation. DG method and Crank-Nicolson scheme are employed for spatial and time discretization, respectively. A semi-explicit extrapolation technique is adopted for the linearization of the nonlinear term. Since the proposed scheme is semi-implicit, only a linear system needs to be solved at each time step. Optimal convergent order of $ O(\tau^2+h^{p+\frac{1}{2}}) $ is proved under time step size condition $ \tau\leq h^{d/4} $. Finally, 2D and 3D numerical examples are provided to validate the theoretical convergence rate.
References:
[1] |
S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2007.
doi: 10.1007/978-0-387-75934-0. |
[2] |
T. Chen, T. Kang, G. Lu and L. Wu,
A $(T, \psi)-\psi_e$ decoupled scheme for a time-dependent multiply-connected eddy current problem, Math. Method. Appl. Sci., 37 (2014), 343-359.
doi: 10.1002/mma.2795. |
[3] |
B. Cockburn, F. Li and C. W.-Shu,
Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comp. Phys., 194 (2004), 488-610.
doi: 10.1016/j.jcp.2003.09.007. |
[4] |
B. Cockburn and C. W.-Shu,
Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comp., 16 (2001), 173-261.
doi: 10.1023/A:1012873910884. |
[5] |
S. Durand and M. Slodicka,
Fully discrete finite element method for Maxwell's equations with nonlinear conductivity, IMA J. Numer. Anal., 31 (2011), 1713-1733.
doi: 10.1093/imanum/drr007. |
[6] |
S. Durand and M. Slodicka,
Convergence of the mixed finite element method for Maxwell's equations with nonlinear conductivity, Math. Methods in the Applied Sciences, 35 (2012), 1489-1504.
doi: 10.1002/mma.2513. |
[7] |
M. Ferreira and C. Buriol,
Orthogonal decomposition and asymptotic behavior for nonlinear Maxwell's equations, J. Math. Anal. Appl., 426 (2015), 392-405.
doi: 10.1016/j.jmaa.2014.12.071. |
[8] |
L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno,
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Model. Math. Anal. Numer., 39 (2005), 1149-1176.
doi: 10.1051/m2an:2005049. |
[9] |
G. Gruner, A. Zawadowski and P. Chaikin, Nonlinear conductivity and noise due to charge-density-wave depinning in nb se 3, Physical Review Letters, 46 (1981), 511-515. Google Scholar |
[10] |
R. Guo, L. Ji and Y. Xu,
High order local local discontinuous Galerkin method for the Allen-Cahn equation: Analysis and simulation, J. Comput. Math., 34 (2016), 135-158.
doi: 10.4208/jcm.1510-m2014-0002. |
[11] |
J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008.
doi: 10.1007/978-0-387-72067-8. |
[12] |
H. Jia, J. Li, Z. Fang and M. Li,
A new FDTD scheme for Maxwell's equations in Kerr-type nonlinear media, Numerical Algorithms, 82 (2019), 223-243.
doi: 10.1007/s11075-018-0602-3. |
[13] |
J. Li and J. S. Hesthaven,
Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comp. Phys., 258 (2014), 915-930.
doi: 10.1016/j.jcp.2013.11.018. |
[14] |
A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating, Peter Peregrinus Ltd., London, 1983. Google Scholar |
[15] |
T. Kang, Y. Wang, L. Wu and K. Kim,
An improved error estimate for Maxwell's equations with a power-law nonlinear conductivity, Appl. Math. Lett., 45 (2015), 93-97.
doi: 10.1016/j.aml.2015.01.017. |
[16] |
W. Reed and T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Report LA-UR-73-479, (1973). Google Scholar |
[17] |
J. Rhyner,
Magnetic properties and AC-losses of superconductors with power law current voltage characteristics, Physica C: Superconductivity, 212 (1993), 292-300.
doi: 10.1016/0921-4534(93)90592-E. |
[18] |
M. Slodicka,
A time discretization scheme for a non-linear degenerate eddy current model for ferromagnetic materials, IMA J. Numer. Anal., 26 (2006), 173-186.
doi: 10.1093/imanum/dri030. |
[19] |
M. Slodicka and S. Durand,
Fully discrete finite element scheme for Maxwell's equations with non-linear boundary condition, J. Math. Anal. Appl., 375 (2011), 230-244.
doi: 10.1016/j.jmaa.2010.09.016. |
[20] |
H. Song and C.-W. Shu,
Uncodntional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation, J. Sci. Comput., 73 (2017), 1178-1203.
doi: 10.1007/s10915-017-0497-5. |
[21] |
B. Wang, Z. Xie and Z. Zhang,
Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media, J. Comput. Phys., 229 (2010), 8552-8563.
doi: 10.1016/j.jcp.2010.07.038. |
[22] |
B. Wang, Z. Xie and Z. Zhang,
Space-time discontinuous galerkin method for maxwell equations in dispersive media, Acta Math. Sci., 34 (2014), 1357-1376.
doi: 10.1016/S0252-9602(14)60089-8. |
[23] |
J. Wang, Z. Xie and C. Chen,
Implicit DG method for time domain Maxwell's equations involving metamaterials, Adv. Appl. Math. Mech., 7 (2015), 796-817.
doi: 10.4208/aamm.2014.m725. |
[24] |
Z. Xie, J. Wang, C. Chen and B. Wang,
Solving Maxwell's equation in meta-materials by a CG-DG method, Commun. Comput. Phys., 19 (2016), 1242-1264.
doi: 10.4208/cicp.scpde14.35s. |
[25] |
C. Yao, Y. Lin, C. Wang and Y. Kou,
A third order linearized BDFscheme for Maxwell's equations with nonlinear conductivity using finite element method, Int. J. Numer. Anal. Mod., 14 (2017), 511-531.
|
[26] |
H. Yin,
On a singular limit problem for nonlinear Maxwell's equations, J. Differential Equations, 156 (1999), 355-375.
doi: 10.1006/jdeq.1998.3608. |
show all references
References:
[1] |
S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2007.
doi: 10.1007/978-0-387-75934-0. |
[2] |
T. Chen, T. Kang, G. Lu and L. Wu,
A $(T, \psi)-\psi_e$ decoupled scheme for a time-dependent multiply-connected eddy current problem, Math. Method. Appl. Sci., 37 (2014), 343-359.
doi: 10.1002/mma.2795. |
[3] |
B. Cockburn, F. Li and C. W.-Shu,
Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comp. Phys., 194 (2004), 488-610.
doi: 10.1016/j.jcp.2003.09.007. |
[4] |
B. Cockburn and C. W.-Shu,
Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comp., 16 (2001), 173-261.
doi: 10.1023/A:1012873910884. |
[5] |
S. Durand and M. Slodicka,
Fully discrete finite element method for Maxwell's equations with nonlinear conductivity, IMA J. Numer. Anal., 31 (2011), 1713-1733.
doi: 10.1093/imanum/drr007. |
[6] |
S. Durand and M. Slodicka,
Convergence of the mixed finite element method for Maxwell's equations with nonlinear conductivity, Math. Methods in the Applied Sciences, 35 (2012), 1489-1504.
doi: 10.1002/mma.2513. |
[7] |
M. Ferreira and C. Buriol,
Orthogonal decomposition and asymptotic behavior for nonlinear Maxwell's equations, J. Math. Anal. Appl., 426 (2015), 392-405.
doi: 10.1016/j.jmaa.2014.12.071. |
[8] |
L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno,
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Model. Math. Anal. Numer., 39 (2005), 1149-1176.
doi: 10.1051/m2an:2005049. |
[9] |
G. Gruner, A. Zawadowski and P. Chaikin, Nonlinear conductivity and noise due to charge-density-wave depinning in nb se 3, Physical Review Letters, 46 (1981), 511-515. Google Scholar |
[10] |
R. Guo, L. Ji and Y. Xu,
High order local local discontinuous Galerkin method for the Allen-Cahn equation: Analysis and simulation, J. Comput. Math., 34 (2016), 135-158.
doi: 10.4208/jcm.1510-m2014-0002. |
[11] |
J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008.
doi: 10.1007/978-0-387-72067-8. |
[12] |
H. Jia, J. Li, Z. Fang and M. Li,
A new FDTD scheme for Maxwell's equations in Kerr-type nonlinear media, Numerical Algorithms, 82 (2019), 223-243.
doi: 10.1007/s11075-018-0602-3. |
[13] |
J. Li and J. S. Hesthaven,
Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comp. Phys., 258 (2014), 915-930.
doi: 10.1016/j.jcp.2013.11.018. |
[14] |
A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating, Peter Peregrinus Ltd., London, 1983. Google Scholar |
[15] |
T. Kang, Y. Wang, L. Wu and K. Kim,
An improved error estimate for Maxwell's equations with a power-law nonlinear conductivity, Appl. Math. Lett., 45 (2015), 93-97.
doi: 10.1016/j.aml.2015.01.017. |
[16] |
W. Reed and T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Report LA-UR-73-479, (1973). Google Scholar |
[17] |
J. Rhyner,
Magnetic properties and AC-losses of superconductors with power law current voltage characteristics, Physica C: Superconductivity, 212 (1993), 292-300.
doi: 10.1016/0921-4534(93)90592-E. |
[18] |
M. Slodicka,
A time discretization scheme for a non-linear degenerate eddy current model for ferromagnetic materials, IMA J. Numer. Anal., 26 (2006), 173-186.
doi: 10.1093/imanum/dri030. |
[19] |
M. Slodicka and S. Durand,
Fully discrete finite element scheme for Maxwell's equations with non-linear boundary condition, J. Math. Anal. Appl., 375 (2011), 230-244.
doi: 10.1016/j.jmaa.2010.09.016. |
[20] |
H. Song and C.-W. Shu,
Uncodntional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation, J. Sci. Comput., 73 (2017), 1178-1203.
doi: 10.1007/s10915-017-0497-5. |
[21] |
B. Wang, Z. Xie and Z. Zhang,
Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media, J. Comput. Phys., 229 (2010), 8552-8563.
doi: 10.1016/j.jcp.2010.07.038. |
[22] |
B. Wang, Z. Xie and Z. Zhang,
Space-time discontinuous galerkin method for maxwell equations in dispersive media, Acta Math. Sci., 34 (2014), 1357-1376.
doi: 10.1016/S0252-9602(14)60089-8. |
[23] |
J. Wang, Z. Xie and C. Chen,
Implicit DG method for time domain Maxwell's equations involving metamaterials, Adv. Appl. Math. Mech., 7 (2015), 796-817.
doi: 10.4208/aamm.2014.m725. |
[24] |
Z. Xie, J. Wang, C. Chen and B. Wang,
Solving Maxwell's equation in meta-materials by a CG-DG method, Commun. Comput. Phys., 19 (2016), 1242-1264.
doi: 10.4208/cicp.scpde14.35s. |
[25] |
C. Yao, Y. Lin, C. Wang and Y. Kou,
A third order linearized BDFscheme for Maxwell's equations with nonlinear conductivity using finite element method, Int. J. Numer. Anal. Mod., 14 (2017), 511-531.
|
[26] |
H. Yin,
On a singular limit problem for nonlinear Maxwell's equations, J. Differential Equations, 156 (1999), 355-375.
doi: 10.1006/jdeq.1998.3608. |
[1] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[2] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[3] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[4] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[5] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[6] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[7] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[8] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[9] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[10] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[11] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[12] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[13] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[14] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[15] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[16] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[17] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[18] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[19] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[20] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]