-
Previous Article
On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
- DCDS-B Home
- This Issue
-
Next Article
Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations
On the unboundedness of the ratio of species and resources for the diffusive logistic equation
1. | Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 164-8555, Japan |
2. | Department of Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 164-8555, Japan |
Concerning a class of diffusive logistic equations, Ni [
References:
[1] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[2] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Royal Soc. Edinburgh A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.
doi: 10.1137/0153014. |
[5] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[7] |
D. L. DeAngelis, B. Zhang, W.-M. Ni and Y. Wang, Carrying capacity of a population diffusing in a heterogeneous environment, Mathematics, 8 (2020), 12 pp.
doi: 10.3390/math8010049. |
[8] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, 2006.
doi: 10.1142/9789812774446. |
[9] |
X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni,
Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogeneous environments, J. Math. Biol., 78 (2019), 1605-1636.
doi: 10.1007/s00285-018-1321-z. |
[10] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[11] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[12] |
X. Q. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Comm. Pure. Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[13] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), 20 pp.
doi: 10.1007/s00526-016-0964-0. |
[14] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Differential Equations, 56 (2017), 26 pp.
doi: 10.1007/s00526-017-1234-5. |
[15] |
J. Inoue, Limiting profile of the optimal distribution in a stationary logistic equation, submitted. Google Scholar |
[16] |
K.-Y. Lam and Y. Lou, Persistence, competition and evolution, in The Dynamics of Biological Systems, Springer Verlag 2019,205–238. |
[17] |
R. Li and Y. Lou,
Some monotone properties for solutions to a reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4445-4455.
doi: 10.3934/dcdsb.2019126. |
[18] |
S. Liang and Y. Lou,
On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788.
doi: 10.3934/dcdsb.2012.17.2771. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences IV, Evolution and Ecology, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008,171–205.
doi: 10.1007/978-3-540-74331-6_5. |
[21] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[22] |
Y. Lou and B. Wang,
Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.
doi: 10.1007/s11784-016-0372-2. |
[23] |
I. Mazzari,
Trait selection and rare mutations; the case of large diffusivities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6693-6724.
doi: 10.3934/dcdsb.2019163. |
[24] |
I. Mazzari, G. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., in press.
doi: 10.1016/j.matpur.2019.10.008. |
[25] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[26] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972. |
[27] |
K. Taira,
Diffusive logistic equations in population dynamics, Adv. Differential Equations, 7 (2002), 237-256.
|
[28] |
K. Taira,
Logistic Dirichlet problems with discontinuous coefficients, J. Math. Pures. Appl., 82 (2003), 1137-1190.
doi: 10.1016/S0021-7824(03)00058-8. |
show all references
References:
[1] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[2] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Royal Soc. Edinburgh A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.
doi: 10.1137/0153014. |
[5] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[7] |
D. L. DeAngelis, B. Zhang, W.-M. Ni and Y. Wang, Carrying capacity of a population diffusing in a heterogeneous environment, Mathematics, 8 (2020), 12 pp.
doi: 10.3390/math8010049. |
[8] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, 2006.
doi: 10.1142/9789812774446. |
[9] |
X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni,
Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogeneous environments, J. Math. Biol., 78 (2019), 1605-1636.
doi: 10.1007/s00285-018-1321-z. |
[10] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[11] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[12] |
X. Q. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Comm. Pure. Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[13] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), 20 pp.
doi: 10.1007/s00526-016-0964-0. |
[14] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Differential Equations, 56 (2017), 26 pp.
doi: 10.1007/s00526-017-1234-5. |
[15] |
J. Inoue, Limiting profile of the optimal distribution in a stationary logistic equation, submitted. Google Scholar |
[16] |
K.-Y. Lam and Y. Lou, Persistence, competition and evolution, in The Dynamics of Biological Systems, Springer Verlag 2019,205–238. |
[17] |
R. Li and Y. Lou,
Some monotone properties for solutions to a reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4445-4455.
doi: 10.3934/dcdsb.2019126. |
[18] |
S. Liang and Y. Lou,
On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788.
doi: 10.3934/dcdsb.2012.17.2771. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences IV, Evolution and Ecology, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008,171–205.
doi: 10.1007/978-3-540-74331-6_5. |
[21] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[22] |
Y. Lou and B. Wang,
Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.
doi: 10.1007/s11784-016-0372-2. |
[23] |
I. Mazzari,
Trait selection and rare mutations; the case of large diffusivities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6693-6724.
doi: 10.3934/dcdsb.2019163. |
[24] |
I. Mazzari, G. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., in press.
doi: 10.1016/j.matpur.2019.10.008. |
[25] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[26] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972. |
[27] |
K. Taira,
Diffusive logistic equations in population dynamics, Adv. Differential Equations, 7 (2002), 237-256.
|
[28] |
K. Taira,
Logistic Dirichlet problems with discontinuous coefficients, J. Math. Pures. Appl., 82 (2003), 1137-1190.
doi: 10.1016/S0021-7824(03)00058-8. |
[1] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[2] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[3] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[4] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[5] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[6] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[7] |
Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059 |
[8] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[9] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[10] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[11] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018 |
[12] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[13] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396 |
[14] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[15] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[16] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[17] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[18] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[19] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[20] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]