-
Previous Article
Time periodic solutions for a two-species chemotaxis-Navier-Stokes system
- DCDS-B Home
- This Issue
-
Next Article
A class of stochastic Fredholm-algebraic equations and applications in finance
On the unboundedness of the ratio of species and resources for the diffusive logistic equation
1. | Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 164-8555, Japan |
2. | Department of Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 164-8555, Japan |
Concerning a class of diffusive logistic equations, Ni [
References:
[1] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[2] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Royal Soc. Edinburgh A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.
doi: 10.1137/0153014. |
[5] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[7] |
D. L. DeAngelis, B. Zhang, W.-M. Ni and Y. Wang, Carrying capacity of a population diffusing in a heterogeneous environment, Mathematics, 8 (2020), 12 pp.
doi: 10.3390/math8010049. |
[8] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, 2006.
doi: 10.1142/9789812774446. |
[9] |
X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni,
Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogeneous environments, J. Math. Biol., 78 (2019), 1605-1636.
doi: 10.1007/s00285-018-1321-z. |
[10] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[11] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[12] |
X. Q. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Comm. Pure. Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[13] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), 20 pp.
doi: 10.1007/s00526-016-0964-0. |
[14] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Differential Equations, 56 (2017), 26 pp.
doi: 10.1007/s00526-017-1234-5. |
[15] |
J. Inoue, Limiting profile of the optimal distribution in a stationary logistic equation, submitted. Google Scholar |
[16] |
K.-Y. Lam and Y. Lou, Persistence, competition and evolution, in The Dynamics of Biological Systems, Springer Verlag 2019,205–238. |
[17] |
R. Li and Y. Lou,
Some monotone properties for solutions to a reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4445-4455.
doi: 10.3934/dcdsb.2019126. |
[18] |
S. Liang and Y. Lou,
On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788.
doi: 10.3934/dcdsb.2012.17.2771. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences IV, Evolution and Ecology, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008,171–205.
doi: 10.1007/978-3-540-74331-6_5. |
[21] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[22] |
Y. Lou and B. Wang,
Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.
doi: 10.1007/s11784-016-0372-2. |
[23] |
I. Mazzari,
Trait selection and rare mutations; the case of large diffusivities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6693-6724.
doi: 10.3934/dcdsb.2019163. |
[24] |
I. Mazzari, G. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., in press.
doi: 10.1016/j.matpur.2019.10.008. |
[25] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[26] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972. |
[27] |
K. Taira,
Diffusive logistic equations in population dynamics, Adv. Differential Equations, 7 (2002), 237-256.
|
[28] |
K. Taira,
Logistic Dirichlet problems with discontinuous coefficients, J. Math. Pures. Appl., 82 (2003), 1137-1190.
doi: 10.1016/S0021-7824(03)00058-8. |
show all references
References:
[1] |
X. Bai, X. He and F. Li,
An optimization problem and its application in population dynamics, Proc. Amer. Math. Soc., 144 (2016), 2161-2170.
doi: 10.1090/proc/12873. |
[2] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Royal Soc. Edinburgh A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.
doi: 10.1137/0153014. |
[5] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[6] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[7] |
D. L. DeAngelis, B. Zhang, W.-M. Ni and Y. Wang, Carrying capacity of a population diffusing in a heterogeneous environment, Mathematics, 8 (2020), 12 pp.
doi: 10.3390/math8010049. |
[8] |
Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, World Scientific, 2006.
doi: 10.1142/9789812774446. |
[9] |
X. Q. He, K.-Y. Lam, Y. Lou and W.-M. Ni,
Dynamics of a consumer-resource reaction-diffusion model: Homogeneous vs. heterogeneous environments, J. Math. Biol., 78 (2019), 1605-1636.
doi: 10.1007/s00285-018-1321-z. |
[10] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[11] |
X. Q. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[12] |
X. Q. He and W.-M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity Ⅰ, Comm. Pure. Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[13] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), 20 pp.
doi: 10.1007/s00526-016-0964-0. |
[14] |
X. Q. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Differential Equations, 56 (2017), 26 pp.
doi: 10.1007/s00526-017-1234-5. |
[15] |
J. Inoue, Limiting profile of the optimal distribution in a stationary logistic equation, submitted. Google Scholar |
[16] |
K.-Y. Lam and Y. Lou, Persistence, competition and evolution, in The Dynamics of Biological Systems, Springer Verlag 2019,205–238. |
[17] |
R. Li and Y. Lou,
Some monotone properties for solutions to a reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4445-4455.
doi: 10.3934/dcdsb.2019126. |
[18] |
S. Liang and Y. Lou,
On the dependence of population size upon random dispersal rate, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2771-2788.
doi: 10.3934/dcdsb.2012.17.2771. |
[19] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[20] |
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences IV, Evolution and Ecology, Lecture Notes in Math., 1922, Math. Biosci. Subser., Springer, Berlin, 2008,171–205.
doi: 10.1007/978-3-540-74331-6_5. |
[21] |
Y. Lou,
Some reaction diffusion models in spatial ecology, Scientia Sinica Mathematica, 45 (2015), 1619-1634.
doi: 10.1360/N012015-00233. |
[22] |
Y. Lou and B. Wang,
Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment, J. Fixed Point Theory Appl., 19 (2017), 755-772.
doi: 10.1007/s11784-016-0372-2. |
[23] |
I. Mazzari,
Trait selection and rare mutations; the case of large diffusivities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6693-6724.
doi: 10.3934/dcdsb.2019163. |
[24] |
I. Mazzari, G. Nadin and Y. Privat, Optimal location of resources maximizing the total population size in logistic models, J. Math. Pure. Appl., in press.
doi: 10.1016/j.matpur.2019.10.008. |
[25] |
K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), 14 pp.
doi: 10.1007/s00526-018-1353-7. |
[26] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, SIAM, Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971972. |
[27] |
K. Taira,
Diffusive logistic equations in population dynamics, Adv. Differential Equations, 7 (2002), 237-256.
|
[28] |
K. Taira,
Logistic Dirichlet problems with discontinuous coefficients, J. Math. Pures. Appl., 82 (2003), 1137-1190.
doi: 10.1016/S0021-7824(03)00058-8. |
[1] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[2] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[3] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[4] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[5] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[6] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[7] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[8] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[9] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[10] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[11] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[12] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[13] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[14] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[15] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[16] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[17] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[18] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[19] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[20] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]