January  2021, 26(1): 693-716. doi: 10.3934/dcdsb.2020189

Random attractors for 2D stochastic micropolar fluid flows on unbounded domains

1. 

School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, China

2. 

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36832, USA

* Corresponding author: Xiaoying Han

Received  January 2020 Revised  April 2020 Published  January 2021 Early access  June 2020

Fund Project: This work is partially supported by the National Science Foundation of China (Grant No. 61673006)

The asymptotic behavior of a model for 2D incompressible stochastic micropolar fluid flows with rough noise on a Poincaré domain is investigated. First, the existence and uniqueness of solutions to an evolution equation arising from the underlying stochastic micropolar fluid model is established via the Galerkin method and energy method. Then the existence of a random attractor is studied by using the theory of random dynamical systems for which the noise is dealt with by appropriate reproducing kernel Hilbert space.

Citation: Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

Z. BrzeźniakM. Capiński and F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probability Theory and Related Fields, 95 (1993), 87-102.  doi: 10.1007/BF01197339.

[3]

Z. Brzeźniak, On Sobolev and Besov spaces regularity of Brownian paths, Stochastics and Stochastics Reports, 56 (1996), 1-15.  doi: 10.1080/17442509608834032.

[4]

Z. Brzeźniak and S. Peszat, Stochastic two dimensional Euler equations, Ann. Probab., 29 (2001), 1796-1832.  doi: 10.1214/aop/1015345773.

[5]

J. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[6]

Z. Brzeźniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587-5629.  doi: 10.1090/S0002-9947-06-03923-7.

[7]

Z. BrzeźniakT. CaraballoJ. A. LangaY. LiG. Łukaszewicz and J. Real, Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains, J. Differential Equations, 255 (2013), 3897-3919.  doi: 10.1016/j.jde.2013.07.043.

[8]

T. Caraballo, The long-time behaviour of stochastic 2D-Navier-Stokes equations, Probabilistic Methods in Fluids, (2003), 70-83.  doi: 10.1142/9789812703989_0005.

[9]

T. Caraballo and X. Han, Applied Nonautonomous and Dynamical Systems, SpringerBriefs in Mathematics, Springer, Switzerland, 2016. doi: 10.1007/978-3-319-49247-6.

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. 

[11]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 10 (2003), 153-201.  doi: 10.1023/A:1022902802385.

[12]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[13]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. - TMA, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.

[14]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer, Berlin.

[15]

J. ChenZ. Chen and B. Dong, Existence of $H^2$-global attractors of two-dimensional micropolar fluid flows, J. Math. Anal. Appl., 322 (2006), 512-522.  doi: 10.1016/j.jmaa.2005.09.011.

[16]

J. ChenB. Dong and Z. Chen, Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains, Nonlinearity, 20 (2007), 1619-1635.  doi: 10.1088/0951-7715/20/7/005.

[17]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probability Theory and Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.

[18]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002.

[19] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional System, Cambridge University Press, Cambridge, 1966.  doi: 10.1017/CBO9780511662829.
[20]

B. Dong and Z. Chen, Global attractors of two-dimensional micropolar fluid flows in some unbounded domains, Appl. Math. Comp., 182 (2006), 610-620.  doi: 10.1016/j.amc.2006.04.024.

[21]

B. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.  doi: 10.1016/j.jde.2010.03.016.

[22]

B. DongJ. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.

[23]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.

[24]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[25]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Analysis, 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.

[26]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and their Numerical Solutions, Springer Nature, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.

[27]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[28]

P. E. Kloeden and B. Schmalfuss, Asymptotic behavior of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280.  doi: 10.1016/S0167-6911(97)00107-2.

[29]

J.-L. Lions and E. Magenes, Non-Homegeneous Boundedary Value Problem and Applications, Spring-Verlag, Berlin, Heidelberg, New York, 1972.

[30]

L. Liu and T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dyn. Diff. Eqns., 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.

[31]

G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5.

[32]

G. Łukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Modelling, 34 (2001), 487-509.  doi: 10.1016/S0895-7177(01)00078-4.

[33]

G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Analysis, 71 (2009), 782-788.  doi: 10.1016/j.na.2008.10.124.

[34]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.  doi: 10.1016/j.na.2006.09.035.

[35]

B. Schmaluss, Attractors for non-autonomous dynamical systems, International Conference on Differential Equations, 99 (2000), 684-689. 

[36]

W. Sun, Micropolar fluid flows with delay on 2D unbounded domains, Journal of Applied Analysis and Computation, 8 (2018), 356-378.  doi: 10.11948/2018.356.

[37]

W. Sun and Y. Li, Asymptotic behavior of pullback attractors for non-autonomous micropolar fluid flows in 2D unbounded domains, Electronic Journal of Differential Equations, 2018 (2018), 1-21. 

[38]

R. Temam, Navier-Stokes Equations, North-Holland Publish Company, Amsterdam, 1979.

[39]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disc. Cont. Dyn. Sys., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[40]

L. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.  doi: 10.1002/mma.1491.

[41]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.

[42]

C. ZhaoS. Zhou and X. Lian, $H^1$-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal.-RWA, 9 (2008), 608-627.  doi: 10.1016/j.nonrwa.2006.12.005.

[43]

C. ZhaoW. Sun and C. Hsu, Pullback dynamical behaviors of the non-autonomous micropolar fluid flows, Dynamics of Partial Differential Equations, 12 (2015), 265-288.  doi: 10.4310/DPDE.2015.v12.n3.a4.

[44]

C. Zhao and W. Sun, Global well-posedness and pullback attractors for a two-dimensional non-autonomous micropolar fluid flows with infinite delays, Commun. Math. Sci., 15 (2017), 97-121.  doi: 10.4310/CMS.2017.v15.n1.a5.

[45]

Caidi ZhaoYanjiao Li and Tomás Caraballo, Trajectory rajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.

[46]

Caidi ZhaoYanjiao Li and Yanmiao Sang, Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows, Z. Angew. Math. Mech., 100 (2020), e201800197.  doi: 10.1002/zamm.201800197.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

Z. BrzeźniakM. Capiński and F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probability Theory and Related Fields, 95 (1993), 87-102.  doi: 10.1007/BF01197339.

[3]

Z. Brzeźniak, On Sobolev and Besov spaces regularity of Brownian paths, Stochastics and Stochastics Reports, 56 (1996), 1-15.  doi: 10.1080/17442509608834032.

[4]

Z. Brzeźniak and S. Peszat, Stochastic two dimensional Euler equations, Ann. Probab., 29 (2001), 1796-1832.  doi: 10.1214/aop/1015345773.

[5]

J. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[6]

Z. Brzeźniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587-5629.  doi: 10.1090/S0002-9947-06-03923-7.

[7]

Z. BrzeźniakT. CaraballoJ. A. LangaY. LiG. Łukaszewicz and J. Real, Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains, J. Differential Equations, 255 (2013), 3897-3919.  doi: 10.1016/j.jde.2013.07.043.

[8]

T. Caraballo, The long-time behaviour of stochastic 2D-Navier-Stokes equations, Probabilistic Methods in Fluids, (2003), 70-83.  doi: 10.1142/9789812703989_0005.

[9]

T. Caraballo and X. Han, Applied Nonautonomous and Dynamical Systems, SpringerBriefs in Mathematics, Springer, Switzerland, 2016. doi: 10.1007/978-3-319-49247-6.

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. 

[11]

T. CaraballoJ. A. LangaV. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 10 (2003), 153-201.  doi: 10.1023/A:1022902802385.

[12]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.  doi: 10.1007/s11464-008-0028-7.

[13]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. - TMA, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.

[14]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer, Berlin.

[15]

J. ChenZ. Chen and B. Dong, Existence of $H^2$-global attractors of two-dimensional micropolar fluid flows, J. Math. Anal. Appl., 322 (2006), 512-522.  doi: 10.1016/j.jmaa.2005.09.011.

[16]

J. ChenB. Dong and Z. Chen, Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains, Nonlinearity, 20 (2007), 1619-1635.  doi: 10.1088/0951-7715/20/7/005.

[17]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probability Theory and Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.

[18]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002.

[19] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional System, Cambridge University Press, Cambridge, 1966.  doi: 10.1017/CBO9780511662829.
[20]

B. Dong and Z. Chen, Global attractors of two-dimensional micropolar fluid flows in some unbounded domains, Appl. Math. Comp., 182 (2006), 610-620.  doi: 10.1016/j.amc.2006.04.024.

[21]

B. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.  doi: 10.1016/j.jde.2010.03.016.

[22]

B. DongJ. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.

[23]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.

[24]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[25]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Analysis, 64 (2006), 1100-1118.  doi: 10.1016/j.na.2005.05.057.

[26]

X. Han and P. E. Kloeden, Random Ordinary Differential Equations and their Numerical Solutions, Springer Nature, Singapore, 2017. doi: 10.1007/978-981-10-6265-0.

[27]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[28]

P. E. Kloeden and B. Schmalfuss, Asymptotic behavior of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280.  doi: 10.1016/S0167-6911(97)00107-2.

[29]

J.-L. Lions and E. Magenes, Non-Homegeneous Boundedary Value Problem and Applications, Spring-Verlag, Berlin, Heidelberg, New York, 1972.

[30]

L. Liu and T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dyn. Diff. Eqns., 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.

[31]

G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-0641-5.

[32]

G. Łukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Modelling, 34 (2001), 487-509.  doi: 10.1016/S0895-7177(01)00078-4.

[33]

G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Analysis, 71 (2009), 782-788.  doi: 10.1016/j.na.2008.10.124.

[34]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.  doi: 10.1016/j.na.2006.09.035.

[35]

B. Schmaluss, Attractors for non-autonomous dynamical systems, International Conference on Differential Equations, 99 (2000), 684-689. 

[36]

W. Sun, Micropolar fluid flows with delay on 2D unbounded domains, Journal of Applied Analysis and Computation, 8 (2018), 356-378.  doi: 10.11948/2018.356.

[37]

W. Sun and Y. Li, Asymptotic behavior of pullback attractors for non-autonomous micropolar fluid flows in 2D unbounded domains, Electronic Journal of Differential Equations, 2018 (2018), 1-21. 

[38]

R. Temam, Navier-Stokes Equations, North-Holland Publish Company, Amsterdam, 1979.

[39]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disc. Cont. Dyn. Sys., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[40]

L. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.  doi: 10.1002/mma.1491.

[41]

C. Zhao and T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differential Equations, 266 (2019), 7205-7229.  doi: 10.1016/j.jde.2018.11.032.

[42]

C. ZhaoS. Zhou and X. Lian, $H^1$-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal.-RWA, 9 (2008), 608-627.  doi: 10.1016/j.nonrwa.2006.12.005.

[43]

C. ZhaoW. Sun and C. Hsu, Pullback dynamical behaviors of the non-autonomous micropolar fluid flows, Dynamics of Partial Differential Equations, 12 (2015), 265-288.  doi: 10.4310/DPDE.2015.v12.n3.a4.

[44]

C. Zhao and W. Sun, Global well-posedness and pullback attractors for a two-dimensional non-autonomous micropolar fluid flows with infinite delays, Commun. Math. Sci., 15 (2017), 97-121.  doi: 10.4310/CMS.2017.v15.n1.a5.

[45]

Caidi ZhaoYanjiao Li and Tomás Caraballo, Trajectory rajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differential Equations, 269 (2020), 467-494.  doi: 10.1016/j.jde.2019.12.011.

[46]

Caidi ZhaoYanjiao Li and Yanmiao Sang, Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows, Z. Angew. Math. Mech., 100 (2020), e201800197.  doi: 10.1002/zamm.201800197.

[1]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic and Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[2]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[3]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[4]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic and Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[5]

Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176

[6]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[7]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[8]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[9]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[10]

Harvey A. R. Williams, Lisa J. Fauci, Donald P. Gaver III. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 519-540. doi: 10.3934/dcdsb.2009.11.519

[11]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[12]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[13]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[14]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[15]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[16]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[17]

Emil Minchev, Mitsuharu Ôtani. $L^∞$-energy method for a parabolic system with convection and hysteresis effect. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1613-1632. doi: 10.3934/cpaa.2018077

[18]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[19]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[20]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (265)
  • HTML views (257)
  • Cited by (0)

Other articles
by authors

[Back to Top]