
-
Previous Article
On the reducibility of a class of almost periodic Hamiltonian systems
- DCDS-B Home
- This Issue
-
Next Article
A diffusive weak Allee effect model with U-shaped emigration and matrix hostility
On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
1. | Faculty of Sciences, Hasselt University, Campus Diepenbeek, BE3590 Diepenbeek, Belgium |
2. | Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA |
3. | Department of Mathematics, Gran Sasso Science Institute, Viale Francesco Crispi 7, L'Aquila 67100, Italy |
4. | Department of Mathematics and Computer Science, Karlstad University, Universitetsgatan 2, Karlstad, Sweden |
5. | Meiji Institute for Advanced Study of Mathematical Sciences, 4-21-1 Nakano, Nakano-ku, Tokyo, Japan |
In this paper, we consider a microscopic semilinear elliptic equation posed in periodically perforated domains and associated with the Fourier-type condition on internal micro-surfaces. The first contribution of this work is the construction of a reliable linearization scheme that allows us, by a suitable choice of scaling arguments and stabilization constants, to prove the weak solvability of the microscopic model. Asymptotic behaviors of the microscopic solution with respect to the microscale parameter are thoroughly investigated in the second theme, based upon several cases of scaling. In particular, the variable scaling illuminates the trivial and non-trivial limits at the macroscale, confirmed by certain rates of convergence. Relying on classical results for homogenization of multiscale elliptic problems, we design a modified two-scale asymptotic expansion to derive the corresponding macroscopic equation, when the scaling choices are compatible. Moreover, we prove the high-order corrector estimates for the homogenization limit in the energy space $ H^1 $, using a large amount of energy-like estimates. A numerical example is provided to corroborate the asymptotic analysis.
References:
[1] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[2] |
G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var., 4 (1999), 209–243.
doi: 10.1051/cocv:1999110. |
[3] |
S. Armstrong, A. Gloria and T. Kuusi,
Bounded correctors in almost periodic homogenization, Arch. Ration. Mech. Anal., 222 (2016), 393-426.
doi: 10.1007/s00205-016-1004-0. |
[4] |
G. A. Chechkin and T. A. Mel'nyk,
Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Appl. Anal., 91 (2012), 1055-1095.
doi: 10.1080/00036811.2011.602634. |
[5] |
G. A. Chechkin and A. L. Piatnitski,
Homogenization of boundary-value problem in a locally periodic perforated domain, Appl. Anal., 71 (1999), 215-235.
doi: 10.1080/00036819908840714. |
[6] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Sciences, 136, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-2158-6. |
[7] |
C. Dörlemann, M. Heida and B. Schweizer,
Transmission conditions for the Helmholtz-equation in perforated domains, Vietnam J. Math., 45 (2017), 241-253.
doi: 10.1007/s10013-016-0222-y. |
[8] |
F. Frank, N. Ray and P. Knabner,
Numerical investigation of homogenized Stokes-Nernst-Planck-Poisson systems, Comput. Vis. Sci., 14 (2011), 385-400.
doi: 10.1007/s00791-013-0189-0. |
[9] |
J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Commun. Contemp. Math., 11 (2009), 585-613.
doi: 10.1142/S0219199709003508. |
[10] |
A. Gaudiello and T. Mel'nyk,
Homogenization of a nonlinear monotone problem with nonlinear {S}ignorini boundary conditions in a domain with highly rough boundary, J. Differential Equations, 265 (2018), 5419-5454.
doi: 10.1016/j.jde.2018.07.002. |
[11] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences, 224, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
G. Griso,
Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286.
|
[13] |
U. Hornung and W. Jäger,
Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differential Equations, 92 (1991), 199-225.
doi: 10.1016/0022-0396(91)90047-D. |
[14] |
J. Kačur,
Solution to strongly nonlinear parabolic problems by a linear approximation scheme, IMA J. Numer. Anal., 19 (1999), 119-145.
doi: 10.1093/imanum/19.1.119. |
[15] |
V. A. Khoa,
A high-order corrector estimate for a semi-linear elliptic system in perforated domains, Comptes Rendus Mécanique, 345 (2017), 337-343.
doi: 10.1016/j.crme.2017.03.003. |
[16] |
V. A. Khoa and A. Muntean,
Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit, J. Math. Anal. Appl., 439 (2016), 271-295.
doi: 10.1016/j.jmaa.2016.02.068. |
[17] |
V. A. Khoa and A. Muntean,
A note on iterations-based derivations of high-order homogenization correctors for multiscale semi-linear elliptic equations, Appl. Math. Lett., 58 (2016), 103-109.
doi: 10.1016/j.aml.2016.02.009. |
[18] |
V. A. Khoa and A. Muntean, Correctors justification for a Smoluchowski-Soret-Dufour model posed in perforated domains, preprint, arXiv: 1704.01790. Google Scholar |
[19] |
V. A. Khoa and A. Muntean,
Corrector homogenization estimates for a non-stationary Stokes–Nernst–Planck–Poisson system in perforated domains, Commun. Math. Sci., 17 (2019), 705-738.
doi: 10.4310/CMS.2019.v17.n3.a6. |
[20] |
S. Kim and K.-A. Lee,
Higher order convergence rates in theory of homogenization Ⅲ: Viscous Hamilton-Jacobi equations, J. Differential Equations, 265 (2018), 5384-5418.
doi: 10.1016/j.jde.2018.07.003. |
[21] |
O. Krehel, T. Aiki and A. Muntean,
Homogenization of a thermo-diffusion system with Smoluchowski interactions, Netw. Heterog. Media, 9 (2014), 739-762.
doi: 10.3934/nhm.2014.9.739. |
[22] |
O. Krehel, A. Muntean and P. Knabner,
Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Advances in Water Resources, 86 (2015), 209-216.
doi: 10.1016/j.advwatres.2015.10.005. |
[23] |
N. T. Long, A. P. N. Dinh and T. N. Diem,
Linear recursive schemes and asymptotic expansion associated with the Kirchoff–Carrier operator, J. Math. Anal. Appl., 267 (2002), 116-134.
doi: 10.1006/jmaa.2001.7755. |
[24] |
T. A. Mel'nik,
Asymptotic expansion of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube, J. Math. Sci., 75 (1995), 1646-1671.
doi: 10.1007/BF02368668. |
[25] |
T. Muthukumar and A. K. Nandakumaran,
Homogenization of low-cost control problems on perforated domains, J. Math. Anal. Appl., 351 (2009), 29-42.
doi: 10.1016/j.jmaa.2008.09.048. |
[26] |
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992. |
[27] |
D. Onofrei and B. Vernescu,
Error estimates in periodic homogenization with non-smooth coefficients, Asymptot. Anal., 54 (2007), 103-123.
|
[28] |
D. Onofrei and B. Vernescu,
Asymptotic analysis of second-order boundary layer correctors, Appl. Anal., 91 (2012), 1097-1110.
doi: 10.1080/00036811.2011.616498. |
[29] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
doi: 10.1007/978-1-4615-3034-3.![]() ![]() |
[30] |
G. Papanicolau, A. Bensoussan and J.-L. Lions, Asymptotic Analysis for Periodic Structures, North Holland, 1978. |
[31] |
N. Ray, Colloidal Transport in Porous Media Modeling and Analysis, Ph.D thesis, University of Erlangen-Nuremberg, 2013. Google Scholar |
[32] |
N. Ray, A. Muntean and P. Knabner,
Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system, J. Math. Anal. Appl., 390 (2012), 374-393.
doi: 10.1016/j.jmaa.2012.01.052. |
[33] |
N. Ray, T. van Noorden, F. Frank and P. Knabner,
Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure, Transp. Porous Media, 95 (2012), 669-696.
doi: 10.1007/s11242-012-0068-z. |
[34] |
M. Schmuck,
First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations, ZAMM Z. Angew. Math. Mech., 92 (2012), 304-319.
doi: 10.1002/zamm.201100003. |
[35] |
M. Schmuck, New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials, J. Math. Phys., 54 (2013), 21pp.
doi: 10.1063/1.4790656. |
[36] |
M. Schmuck and S. Kalliadasis, Rate of convergence of general phase field equations in strongly heterogeneous media toward their homogenized limit, SIAM J. Appl. Math., 77 (2017), 1471–1492.
doi: 10.1137/16M1079646. |
[37] |
M. Schmuck, M. Pradas, G. A. Pavliotis and S. Kalliadasis,
Upscaled phase-field model for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 3705-3724.
doi: 10.1098/rspa.2012.0020. |
[38] |
C. Schumacher, F. Schwarzenberger and I. Veselić,
A Glivenko–Cantelli theorem for almost additive functions on lattices, Stochastic Process. Appl., 127 (2017), 179-208.
doi: 10.1016/j.spa.2016.06.005. |
[39] |
M. Slodi{č}ka,
Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition, M2AN Math. Model. Numer. Anal., 35 (2001), 691-711.
doi: 10.1051/m2an:2001132. |
[40] |
T. A. Suslina,
Homogenization of the Dirichlet problem for elliptic systems: ${L}_{2}$-operator error estimates, Mathematika, 59 (2013), 463-476.
doi: 10.1112/S0025579312001131. |
[41] |
N. Triantafyllidis and S. Bardenhagen,
The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models, J. Mech. Phys. Solids, 44 (1996), 1891-1928.
doi: 10.1016/0022-5096(96)00047-6. |
[42] |
H. M. Versieux and M. Sarkis,
Numerical boundary corrector for elliptic equations with rapidly oscillating periodic coefficients, Comm. Numer. Methods Engrg., 22 (2006), 577-589.
doi: 10.1002/cnm.834. |
[43] |
V. V. Zhikov and S. E. Pastukhova,
Operator estimates in homogenization theory, Russian Math. Surveys, 71 (2016), 417-511.
doi: 10.4213/rm9710. |
show all references
References:
[1] |
S. Agmon, A. Douglis and L. Nirenberg,
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405. |
[2] |
G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var., 4 (1999), 209–243.
doi: 10.1051/cocv:1999110. |
[3] |
S. Armstrong, A. Gloria and T. Kuusi,
Bounded correctors in almost periodic homogenization, Arch. Ration. Mech. Anal., 222 (2016), 393-426.
doi: 10.1007/s00205-016-1004-0. |
[4] |
G. A. Chechkin and T. A. Mel'nyk,
Asymptotics of eigenelements to spectral problem in thick cascade junction with concentrated masses, Appl. Anal., 91 (2012), 1055-1095.
doi: 10.1080/00036811.2011.602634. |
[5] |
G. A. Chechkin and A. L. Piatnitski,
Homogenization of boundary-value problem in a locally periodic perforated domain, Appl. Anal., 71 (1999), 215-235.
doi: 10.1080/00036819908840714. |
[6] |
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Sciences, 136, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-2158-6. |
[7] |
C. Dörlemann, M. Heida and B. Schweizer,
Transmission conditions for the Helmholtz-equation in perforated domains, Vietnam J. Math., 45 (2017), 241-253.
doi: 10.1007/s10013-016-0222-y. |
[8] |
F. Frank, N. Ray and P. Knabner,
Numerical investigation of homogenized Stokes-Nernst-Planck-Poisson systems, Comput. Vis. Sci., 14 (2011), 385-400.
doi: 10.1007/s00791-013-0189-0. |
[9] |
J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Commun. Contemp. Math., 11 (2009), 585-613.
doi: 10.1142/S0219199709003508. |
[10] |
A. Gaudiello and T. Mel'nyk,
Homogenization of a nonlinear monotone problem with nonlinear {S}ignorini boundary conditions in a domain with highly rough boundary, J. Differential Equations, 265 (2018), 5419-5454.
doi: 10.1016/j.jde.2018.07.002. |
[11] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences, 224, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
G. Griso,
Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286.
|
[13] |
U. Hornung and W. Jäger,
Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differential Equations, 92 (1991), 199-225.
doi: 10.1016/0022-0396(91)90047-D. |
[14] |
J. Kačur,
Solution to strongly nonlinear parabolic problems by a linear approximation scheme, IMA J. Numer. Anal., 19 (1999), 119-145.
doi: 10.1093/imanum/19.1.119. |
[15] |
V. A. Khoa,
A high-order corrector estimate for a semi-linear elliptic system in perforated domains, Comptes Rendus Mécanique, 345 (2017), 337-343.
doi: 10.1016/j.crme.2017.03.003. |
[16] |
V. A. Khoa and A. Muntean,
Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit, J. Math. Anal. Appl., 439 (2016), 271-295.
doi: 10.1016/j.jmaa.2016.02.068. |
[17] |
V. A. Khoa and A. Muntean,
A note on iterations-based derivations of high-order homogenization correctors for multiscale semi-linear elliptic equations, Appl. Math. Lett., 58 (2016), 103-109.
doi: 10.1016/j.aml.2016.02.009. |
[18] |
V. A. Khoa and A. Muntean, Correctors justification for a Smoluchowski-Soret-Dufour model posed in perforated domains, preprint, arXiv: 1704.01790. Google Scholar |
[19] |
V. A. Khoa and A. Muntean,
Corrector homogenization estimates for a non-stationary Stokes–Nernst–Planck–Poisson system in perforated domains, Commun. Math. Sci., 17 (2019), 705-738.
doi: 10.4310/CMS.2019.v17.n3.a6. |
[20] |
S. Kim and K.-A. Lee,
Higher order convergence rates in theory of homogenization Ⅲ: Viscous Hamilton-Jacobi equations, J. Differential Equations, 265 (2018), 5384-5418.
doi: 10.1016/j.jde.2018.07.003. |
[21] |
O. Krehel, T. Aiki and A. Muntean,
Homogenization of a thermo-diffusion system with Smoluchowski interactions, Netw. Heterog. Media, 9 (2014), 739-762.
doi: 10.3934/nhm.2014.9.739. |
[22] |
O. Krehel, A. Muntean and P. Knabner,
Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Advances in Water Resources, 86 (2015), 209-216.
doi: 10.1016/j.advwatres.2015.10.005. |
[23] |
N. T. Long, A. P. N. Dinh and T. N. Diem,
Linear recursive schemes and asymptotic expansion associated with the Kirchoff–Carrier operator, J. Math. Anal. Appl., 267 (2002), 116-134.
doi: 10.1006/jmaa.2001.7755. |
[24] |
T. A. Mel'nik,
Asymptotic expansion of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube, J. Math. Sci., 75 (1995), 1646-1671.
doi: 10.1007/BF02368668. |
[25] |
T. Muthukumar and A. K. Nandakumaran,
Homogenization of low-cost control problems on perforated domains, J. Math. Anal. Appl., 351 (2009), 29-42.
doi: 10.1016/j.jmaa.2008.09.048. |
[26] |
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992. |
[27] |
D. Onofrei and B. Vernescu,
Error estimates in periodic homogenization with non-smooth coefficients, Asymptot. Anal., 54 (2007), 103-123.
|
[28] |
D. Onofrei and B. Vernescu,
Asymptotic analysis of second-order boundary layer correctors, Appl. Anal., 91 (2012), 1097-1110.
doi: 10.1080/00036811.2011.616498. |
[29] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
doi: 10.1007/978-1-4615-3034-3.![]() ![]() |
[30] |
G. Papanicolau, A. Bensoussan and J.-L. Lions, Asymptotic Analysis for Periodic Structures, North Holland, 1978. |
[31] |
N. Ray, Colloidal Transport in Porous Media Modeling and Analysis, Ph.D thesis, University of Erlangen-Nuremberg, 2013. Google Scholar |
[32] |
N. Ray, A. Muntean and P. Knabner,
Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system, J. Math. Anal. Appl., 390 (2012), 374-393.
doi: 10.1016/j.jmaa.2012.01.052. |
[33] |
N. Ray, T. van Noorden, F. Frank and P. Knabner,
Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure, Transp. Porous Media, 95 (2012), 669-696.
doi: 10.1007/s11242-012-0068-z. |
[34] |
M. Schmuck,
First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations, ZAMM Z. Angew. Math. Mech., 92 (2012), 304-319.
doi: 10.1002/zamm.201100003. |
[35] |
M. Schmuck, New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials, J. Math. Phys., 54 (2013), 21pp.
doi: 10.1063/1.4790656. |
[36] |
M. Schmuck and S. Kalliadasis, Rate of convergence of general phase field equations in strongly heterogeneous media toward their homogenized limit, SIAM J. Appl. Math., 77 (2017), 1471–1492.
doi: 10.1137/16M1079646. |
[37] |
M. Schmuck, M. Pradas, G. A. Pavliotis and S. Kalliadasis,
Upscaled phase-field model for interfacial dynamics in strongly heterogeneous domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 3705-3724.
doi: 10.1098/rspa.2012.0020. |
[38] |
C. Schumacher, F. Schwarzenberger and I. Veselić,
A Glivenko–Cantelli theorem for almost additive functions on lattices, Stochastic Process. Appl., 127 (2017), 179-208.
doi: 10.1016/j.spa.2016.06.005. |
[39] |
M. Slodi{č}ka,
Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition, M2AN Math. Model. Numer. Anal., 35 (2001), 691-711.
doi: 10.1051/m2an:2001132. |
[40] |
T. A. Suslina,
Homogenization of the Dirichlet problem for elliptic systems: ${L}_{2}$-operator error estimates, Mathematika, 59 (2013), 463-476.
doi: 10.1112/S0025579312001131. |
[41] |
N. Triantafyllidis and S. Bardenhagen,
The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models, J. Mech. Phys. Solids, 44 (1996), 1891-1928.
doi: 10.1016/0022-5096(96)00047-6. |
[42] |
H. M. Versieux and M. Sarkis,
Numerical boundary corrector for elliptic equations with rapidly oscillating periodic coefficients, Comm. Numer. Methods Engrg., 22 (2006), 577-589.
doi: 10.1002/cnm.834. |
[43] |
V. V. Zhikov and S. E. Pastukhova,
Operator estimates in homogenization theory, Russian Math. Surveys, 71 (2016), 417-511.
doi: 10.4213/rm9710. |




![]() |
![]() |
[1] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[2] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[3] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[4] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[5] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[6] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[7] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[8] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[9] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[10] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[11] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[12] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[13] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[14] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[15] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[16] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[17] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[18] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[19] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[20] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]