May  2021, 26(5): 2499-2508. doi: 10.3934/dcdsb.2020192

A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China

2. 

Department of Mathematics, The University of Hong Kong, Hong Kong, China

* Corresponding author: Xianming Liu

Received  August 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by NSF grants of China No. 11971186

We examine a Wong-Zakai type approximation of a family of stochastic differential equations driven by a general càdlàg semimartingale. For such an approximation, compared with the pointwise convergence result by Kurtz, Pardoux and Protter [10,Theorem 6.5], we establish stronger convergence results under the Skorokhod $ M_1 $-topology, which, among other possible applications, implies the convergence of the first passage time of the solution to the approximating stochastic differential equation.

Citation: Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192
References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2] R. B. Ash, Probability and Measure Theory, Harcourt/Academic Press, Burlington, MA, 2000.   Google Scholar
[3]

T. Fujiwara and H. Kunita, Canonical SDE's based on semimartingales with spatial parameters. I. Stochastic flows of diffeomorphisms, Kyushu J. Math., 53 (1999), 265-300.  doi: 10.2206/kyushujm.53.265.  Google Scholar

[4]

M. Hairer and É. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan, 67 (2015), 1551-1604.  doi: 10.2969/jmsj/06741551.  Google Scholar

[5]

R. Hintze and I. Pavlyukevich, Small noise asymptotics and first passage times of integrated Ornstein-Uhlenbeck processes driven by $\alpha $-stable Lévy processes, Bernoulli, 20 (2014), 265-281.  doi: 10.3150/12-BEJ485.  Google Scholar

[6]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.  Google Scholar

[7]

H. Kunita, Stochastic differential equations with jumps and stochastic flows of diffeomorphisms, in Itô's Stochastic Calculus and Probability Theory, Springer, Tokyo, 1996,197–211. doi: 10.1007/978-4-431-68532-6_13.  Google Scholar

[8]

H. Kunita, Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, in Real and Stochastic Analysis, Trends Math., Birkhüser, Boston, MA, 2004,305–373. doi: 10.1007/978-1-4612-2054-1_6.  Google Scholar

[9]

T. G. Kurtz, Random time changes and convergence in distribution under the Meyer-Zheng conditions, Ann. Probab., 19 (1991), 1010-1034.  doi: 10.1214/aop/1176990333.  Google Scholar

[10]

T. G. KurtzÉ. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), 351-377.   Google Scholar

[11]

T. G. Kurtz and P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070.  doi: 10.1214/aop/1176990334.  Google Scholar

[12]

T. G. Kurtz and P. E. Protter, Weak convergence of stochastic integrals and differential equations, in Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math., 1627, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1996, 1–41. doi: 10.1007/BFb0093176.  Google Scholar

[13]

S. I. Marcus, Modelling and approximation of stochastic differential equations driven by semimaringales, Stochastics, 4 (1980/81), 223-245.  doi: 10.1080/17442508108833165.  Google Scholar

[14]

I. Pavlyukevich and M. Riedle, Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, Stoch. Anal. Appl., 33 (2015), 271-305.  doi: 10.1080/07362994.2014.988358.  Google Scholar

[15]

P. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, 21, Springer-Verlag, Berlin, 2005. doi: 10.1007/978-3-662-10061-5.  Google Scholar

[16]

A. A. Puhalskii and W. Whitt, Functional large deviation principles for first-passage-time processes, Ann. Appl. Probab., 7 (1997), 362-381.  doi: 10.1214/aoap/1034625336.  Google Scholar

[17]

A. V. Skorokhod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., 1 (1956), 289-319.   Google Scholar

[18]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[19]

W. Whitt, Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer Series in Operations Research, Springer-Verlag, New York, 2002. doi: 10.1007/b97479.  Google Scholar

[20]

W. Whitt, Weak convergence of first passage time processes, J. Appl. Probability, 8 (1971), 417-422.  doi: 10.2307/3211913.  Google Scholar

[21]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[22]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[23]

X. Zhang, Derivative formulas and gradient estimates for SDEs driven by $\alpha$-stable processes, Stochastic Process. Appl., 123 (2013), 1213-1228.  doi: 10.1016/j.spa.2012.11.012.  Google Scholar

show all references

References:
[1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.  doi: 10.1017/CBO9780511809781.  Google Scholar
[2] R. B. Ash, Probability and Measure Theory, Harcourt/Academic Press, Burlington, MA, 2000.   Google Scholar
[3]

T. Fujiwara and H. Kunita, Canonical SDE's based on semimartingales with spatial parameters. I. Stochastic flows of diffeomorphisms, Kyushu J. Math., 53 (1999), 265-300.  doi: 10.2206/kyushujm.53.265.  Google Scholar

[4]

M. Hairer and É. Pardoux, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan, 67 (2015), 1551-1604.  doi: 10.2969/jmsj/06741551.  Google Scholar

[5]

R. Hintze and I. Pavlyukevich, Small noise asymptotics and first passage times of integrated Ornstein-Uhlenbeck processes driven by $\alpha $-stable Lévy processes, Bernoulli, 20 (2014), 265-281.  doi: 10.3150/12-BEJ485.  Google Scholar

[6]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.  Google Scholar

[7]

H. Kunita, Stochastic differential equations with jumps and stochastic flows of diffeomorphisms, in Itô's Stochastic Calculus and Probability Theory, Springer, Tokyo, 1996,197–211. doi: 10.1007/978-4-431-68532-6_13.  Google Scholar

[8]

H. Kunita, Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, in Real and Stochastic Analysis, Trends Math., Birkhüser, Boston, MA, 2004,305–373. doi: 10.1007/978-1-4612-2054-1_6.  Google Scholar

[9]

T. G. Kurtz, Random time changes and convergence in distribution under the Meyer-Zheng conditions, Ann. Probab., 19 (1991), 1010-1034.  doi: 10.1214/aop/1176990333.  Google Scholar

[10]

T. G. KurtzÉ. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), 351-377.   Google Scholar

[11]

T. G. Kurtz and P. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070.  doi: 10.1214/aop/1176990334.  Google Scholar

[12]

T. G. Kurtz and P. E. Protter, Weak convergence of stochastic integrals and differential equations, in Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math., 1627, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1996, 1–41. doi: 10.1007/BFb0093176.  Google Scholar

[13]

S. I. Marcus, Modelling and approximation of stochastic differential equations driven by semimaringales, Stochastics, 4 (1980/81), 223-245.  doi: 10.1080/17442508108833165.  Google Scholar

[14]

I. Pavlyukevich and M. Riedle, Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, Stoch. Anal. Appl., 33 (2015), 271-305.  doi: 10.1080/07362994.2014.988358.  Google Scholar

[15]

P. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, 21, Springer-Verlag, Berlin, 2005. doi: 10.1007/978-3-662-10061-5.  Google Scholar

[16]

A. A. Puhalskii and W. Whitt, Functional large deviation principles for first-passage-time processes, Ann. Appl. Probab., 7 (1997), 362-381.  doi: 10.1214/aoap/1034625336.  Google Scholar

[17]

A. V. Skorokhod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., 1 (1956), 289-319.   Google Scholar

[18]

G. Tessitore and J. Zabczyk, Wong-Zakai approximation of stochastic evolution equations, J. Evol. Equ., 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[19]

W. Whitt, Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer Series in Operations Research, Springer-Verlag, New York, 2002. doi: 10.1007/b97479.  Google Scholar

[20]

W. Whitt, Weak convergence of first passage time processes, J. Appl. Probability, 8 (1971), 417-422.  doi: 10.2307/3211913.  Google Scholar

[21]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[22]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[23]

X. Zhang, Derivative formulas and gradient estimates for SDEs driven by $\alpha$-stable processes, Stochastic Process. Appl., 123 (2013), 1213-1228.  doi: 10.1016/j.spa.2012.11.012.  Google Scholar

[1]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[2]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[3]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[4]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[5]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[6]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[7]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[8]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[9]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021101

[10]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[11]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[12]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[13]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[14]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[15]

Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076

[16]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021005

[17]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[18]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[19]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (109)
  • HTML views (306)
  • Cited by (0)

Other articles
by authors

[Back to Top]