doi: 10.3934/dcdsb.2020198

Global classical solutions to two-dimensional chemotaxis-shallow water system

College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China

* Corresponding author: Ying Yang

Received  December 2019 Revised  April 2020 Published  June 2020

Fund Project: The author is supported by the Guangdong Basic and Applied Basic Research Foundation (No.2020A1515010446), NSFC(No.11971320, No.11671155, No.11701384) and China Scholarship Council (No.201908440614)

We consider the Cauchy problem of two-dimensional chemotaxis-shallow water system in the present paper. For regular initial data with small energy but possibly large oscillations, we prove the global well-posedness of classical solution. Then, we show the large-time behavior of the solution using the time-independent lower-order estimates as well.

Citation: Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020198
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

M. ChaeK. Kang and J. Lee, On existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. A, 33 (2013), 2271-2297.   Google Scholar

[3]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[4]

J. H. CheL. ChenB. Duan and Z. Luo, On the existence of local strong solutions to chemotaxis-shallow water system with large data and vacuum, J. Differential Equations, 261 (2016), 6758-6789.  doi: 10.1016/j.jde.2016.09.005.  Google Scholar

[5]

R. J. DuanX. Li and Z. Y. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differential Equations, 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[6]

R. DuanA. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[7]

R. J. Duan and Z. Y. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 2014 (2014), 1833-1852.  doi: 10.1093/imrn/rns270.  Google Scholar

[8]

E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.  doi: 10.1088/1361-6544/aa9d5f.  Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[12]

X. D. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995-1059.  doi: 10.1007/s00205-017-1188-y.  Google Scholar

[13]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[16]

J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.  doi: 10.1016/j.anihpc.2011.04.005.  Google Scholar

[17]

A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.  doi: 10.1142/S0218202510004507.  Google Scholar

[18]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[19]

L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[20]

Z. Tan and X. Zhang, Decay estimates of the coupled chemotaxis-fluid equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 410 (2014), 27-38.  doi: 10.1016/j.jmaa.2013.08.008.  Google Scholar

[21]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Q. Tao and Z.-A. Yao, Global existence and large time behavior for a two-dimensional chemotaxis-shallow water system, J. Differential Equations, 265 (2018), 3092-3129.  doi: 10.1016/j.jde.2018.05.002.  Google Scholar

[23]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[24]

W. K. Wang and Y. C. Wang, The $L^p$ decay estimates for the chemotaxis-shallow water system, J. Math. Anal. Appl., 474 (2019), 640-665.  doi: 10.1016/j.jmaa.2019.01.066.  Google Scholar

[25]

Y. L. WangM. Winkler and Z. Y. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421-466.  doi: 10.1109/tps.2017.2783887.  Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pure. Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[28]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[29]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[30]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[31]

M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.  doi: 10.1016/j.jfa.2018.12.009.  Google Scholar

[32]

Q. Zhang and X. X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.  doi: 10.1137/130936920.  Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

M. ChaeK. Kang and J. Lee, On existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. A, 33 (2013), 2271-2297.   Google Scholar

[3]

M. ChaeK. Kang and J. Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differential Equations, 39 (2014), 1205-1235.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[4]

J. H. CheL. ChenB. Duan and Z. Luo, On the existence of local strong solutions to chemotaxis-shallow water system with large data and vacuum, J. Differential Equations, 261 (2016), 6758-6789.  doi: 10.1016/j.jde.2016.09.005.  Google Scholar

[5]

R. J. DuanX. Li and Z. Y. Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differential Equations, 263 (2017), 6284-6316.  doi: 10.1016/j.jde.2017.07.015.  Google Scholar

[6]

R. DuanA. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35 (2010), 1635-1673.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[7]

R. J. Duan and Z. Y. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 2014 (2014), 1833-1852.  doi: 10.1093/imrn/rns270.  Google Scholar

[8]

E. Espejo and M. Winkler, Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31 (2018), 1227-1259.  doi: 10.1088/1361-6544/aa9d5f.  Google Scholar

[9]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.   Google Scholar

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[12]

X. D. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995-1059.  doi: 10.1007/s00205-017-1188-y.  Google Scholar

[13]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[16]

J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.  doi: 10.1016/j.anihpc.2011.04.005.  Google Scholar

[17]

A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.  doi: 10.1142/S0218202510004507.  Google Scholar

[18]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[19]

L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[20]

Z. Tan and X. Zhang, Decay estimates of the coupled chemotaxis-fluid equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 410 (2014), 27-38.  doi: 10.1016/j.jmaa.2013.08.008.  Google Scholar

[21]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Q. Tao and Z.-A. Yao, Global existence and large time behavior for a two-dimensional chemotaxis-shallow water system, J. Differential Equations, 265 (2018), 3092-3129.  doi: 10.1016/j.jde.2018.05.002.  Google Scholar

[23]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[24]

W. K. Wang and Y. C. Wang, The $L^p$ decay estimates for the chemotaxis-shallow water system, J. Math. Anal. Appl., 474 (2019), 640-665.  doi: 10.1016/j.jmaa.2019.01.066.  Google Scholar

[25]

Y. L. WangM. Winkler and Z. Y. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 421-466.  doi: 10.1109/tps.2017.2783887.  Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pure. Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[28]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[29]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[30]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[31]

M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, J. Funct. Anal., 276 (2019), 1339-1401.  doi: 10.1016/j.jfa.2018.12.009.  Google Scholar

[32]

Q. Zhang and X. X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.  doi: 10.1137/130936920.  Google Scholar

[1]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[4]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[5]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[6]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[9]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[10]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[11]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[12]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[14]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[15]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[16]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[17]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[18]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[19]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[20]

Marta Biancardi, Lucia Maddalena, Giovanni Villani. Water taxes and fines imposed on legal and illegal firms exploiting groudwater. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021008

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (58)
  • HTML views (224)
  • Cited by (0)

Other articles
by authors

[Back to Top]