• Previous Article
    Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions
  • DCDS-B Home
  • This Issue
  • Next Article
    Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media
May  2021, 26(5): 2677-2692. doi: 10.3934/dcdsb.2020200

Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks

a. 

Department of Mathematics Hunan First Normal University, Changsha, Hunan 410205, China

b. 

School of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China

c. 

ool of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China c Jiangsu Provincial Key Laboratory of Networked Collective Intelligence Southeast University, Nanjing, Jiangsu 210096, China

d. 

Department of Information Technology, Hunan Women's University Changsha, Hunan 410002, China

e. 

School of Mathematics and Statistics, Changsha University of Science and Technology Changsha, Hunan 410114, China

* Corresponding author: Jinde Cao

Received  December 2019 Revised  March 2020 Published  June 2020

Fund Project: This work was supported in part by NSF of China(No.11601143, 61833005), Jiangsu Provincial Key Laboratory of Networked Collective Intelligence (No.BM2017002), China Postdoctoral Science Foundation (No.2018M632207) and Teaching Reform Project of Ordinary Colleges and Universities in Hunan Province (No. 844)

In this article, we present several results on Finite-Time Stability (FTS) of impulsive differential inclusion. In order to investigate the FTS problem, a new concept of Finite-Time Stable Function Pair (FTSFP) is proposed. By virtue of average impulsive interval and FTSFP, two unified criteria on FTS of impulsive differential inclusion are obtained, which are effective for both the destabilizing impulses and the stabilizing impulses. In addition, the settling-time depends not only on the initial value, but also on the information of impulsive sequence. As an extension, a delay-independent FTS result of impulsive delayed differential inclusion is presented. Finally, the obtained results are applied to study the FTS of discontinuous impulsive neural networks.

Citation: Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200
References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.  Google Scholar

[2]

J. Abderrahim nd E. Vilches, A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.  doi: 10.1016/j.jde.2018.10.024.  Google Scholar

[3]

W. AllegrettoD. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125.   Google Scholar

[4]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[5]

R. AmbrosinoF. CalabreseC. Cosentino and G. Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.  doi: 10.1109/TAC.2008.2010965.  Google Scholar

[6]

J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[7]

G. Ballinger and X. Z. Liu, Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.   Google Scholar

[8]

J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar

[9]

G. ChenY. Yang and J. Li, Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.  doi: 10.1049/iet-cta.2010.0259.  Google Scholar

[10]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[11]

S. DjebaliL. Gorniewicz and A. Ouahab, First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.  doi: 10.1016/j.mcm.2010.04.016.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.  doi: 10.1109/TCSI.2003.818614.  Google Scholar

[14]

M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463.   Google Scholar

[15]

H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.  doi: 10.1143/PTP.69.32.  Google Scholar

[16]

G. Haddad, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.  doi: 10.1016/0022-0396(81)90031-0.  Google Scholar

[17]

G. Haddad, Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.  doi: 10.1016/0362-546X(81)90111-5.  Google Scholar

[18]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[19]

S. C. HuD. A. Kandilakis and N. S. Papageorgiou, Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.  doi: 10.1090/S0002-9939-99-04338-5.  Google Scholar

[20] L. HuangZ. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011.   Google Scholar
[21]

P. HurB. DuiserS. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467.   Google Scholar

[22]

X. D. LiD. W. C. Ho and J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[23]

Y. C. Li and R. G. Sanfelice, Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.  doi: 10.1016/j.automatica.2018.10.016.  Google Scholar

[24]

J. X. LiuL. G. WuC. W. WuW. S. Luo and L. Franquelo, Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.  doi: 10.1016/j.automatica.2019.01.029.  Google Scholar

[25]

K.-Z. LiuX.-M. SunJ. Liu and R. Andrew, Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.  doi: 10.1109/TAC.2015.2507782.  Google Scholar

[26]

W. L. Lu and T. P. Chen, Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.  doi: 10.1162/neco.2008.10-06-364.  Google Scholar

[27]

J. Q LuD. W. C. Ho and J. D. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[28]

E. Moulay and W. Perruquetti, Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.  doi: 10.1093/imamci/dni039.  Google Scholar

[29]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[30]

E. MoulayM. DambrineN. Yeganefar and W. Perruquetti, Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[31]

J. Nygren and K. Pelckmans, A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.  doi: 10.1016/j.automatica.2018.06.038.  Google Scholar

[32]

B. E. Paden and S. S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.  doi: 10.1109/TCS.1987.1086038.  Google Scholar

[33]

S. G. PengF. Q. Deng and Y. Zhang, A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.  doi: 10.1016/j.sysconle.2018.04.002.  Google Scholar

[34]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[35]

A. PolyakovD. Efimov and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.  doi: 10.1016/j.automatica.2014.10.082.  Google Scholar

[36]

S. T. Qin and X. P. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[37]

E. SerpelloniM. Maggiore and C. Damaren, Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.  doi: 10.1016/j.automatica.2016.02.028.  Google Scholar

[38]

S. VaddiK. AlfriendS. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268.   Google Scholar

[39]

A. Vinodkumar and A. Anguraj, Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.  doi: 10.1016/j.nahs.2011.04.002.  Google Scholar

[40]

X. T. WuY. Tang and W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.  doi: 10.1016/j.automatica.2016.01.002.  Google Scholar

[41]

T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001.  Google Scholar

[42]

B. Zhou, On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.  doi: 10.1016/j.automatica.2015.12.030.  Google Scholar

show all references

References:
[1]

N. AbadaM. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.  doi: 10.1016/j.jde.2009.03.004.  Google Scholar

[2]

J. Abderrahim nd E. Vilches, A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.  doi: 10.1016/j.jde.2018.10.024.  Google Scholar

[3]

W. AllegrettoD. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125.   Google Scholar

[4]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[5]

R. AmbrosinoF. CalabreseC. Cosentino and G. Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.  doi: 10.1109/TAC.2008.2010965.  Google Scholar

[6]

J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[7]

G. Ballinger and X. Z. Liu, Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.   Google Scholar

[8]

J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar

[9]

G. ChenY. Yang and J. Li, Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.  doi: 10.1049/iet-cta.2010.0259.  Google Scholar

[10]

G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.  doi: 10.1137/17M1129076.  Google Scholar

[11]

S. DjebaliL. Gorniewicz and A. Ouahab, First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.  doi: 10.1016/j.mcm.2010.04.016.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.  Google Scholar

[13]

M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.  doi: 10.1109/TCSI.2003.818614.  Google Scholar

[14]

M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463.   Google Scholar

[15]

H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.  doi: 10.1143/PTP.69.32.  Google Scholar

[16]

G. Haddad, Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.  doi: 10.1016/0022-0396(81)90031-0.  Google Scholar

[17]

G. Haddad, Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.  doi: 10.1016/0362-546X(81)90111-5.  Google Scholar

[18]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[19]

S. C. HuD. A. Kandilakis and N. S. Papageorgiou, Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.  doi: 10.1090/S0002-9939-99-04338-5.  Google Scholar

[20] L. HuangZ. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011.   Google Scholar
[21]

P. HurB. DuiserS. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467.   Google Scholar

[22]

X. D. LiD. W. C. Ho and J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[23]

Y. C. Li and R. G. Sanfelice, Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.  doi: 10.1016/j.automatica.2018.10.016.  Google Scholar

[24]

J. X. LiuL. G. WuC. W. WuW. S. Luo and L. Franquelo, Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.  doi: 10.1016/j.automatica.2019.01.029.  Google Scholar

[25]

K.-Z. LiuX.-M. SunJ. Liu and R. Andrew, Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.  doi: 10.1109/TAC.2015.2507782.  Google Scholar

[26]

W. L. Lu and T. P. Chen, Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.  doi: 10.1162/neco.2008.10-06-364.  Google Scholar

[27]

J. Q LuD. W. C. Ho and J. D. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[28]

E. Moulay and W. Perruquetti, Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.  doi: 10.1093/imamci/dni039.  Google Scholar

[29]

E. Moulay and W. Perruquetti, Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.  doi: 10.1016/j.jmaa.2005.11.046.  Google Scholar

[30]

E. MoulayM. DambrineN. Yeganefar and W. Perruquetti, Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[31]

J. Nygren and K. Pelckmans, A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.  doi: 10.1016/j.automatica.2018.06.038.  Google Scholar

[32]

B. E. Paden and S. S. Sastry, A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.  doi: 10.1109/TCS.1987.1086038.  Google Scholar

[33]

S. G. PengF. Q. Deng and Y. Zhang, A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.  doi: 10.1016/j.sysconle.2018.04.002.  Google Scholar

[34]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[35]

A. PolyakovD. Efimov and W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.  doi: 10.1016/j.automatica.2014.10.082.  Google Scholar

[36]

S. T. Qin and X. P. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.  doi: 10.1016/j.jmaa.2014.11.057.  Google Scholar

[37]

E. SerpelloniM. Maggiore and C. Damaren, Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.  doi: 10.1016/j.automatica.2016.02.028.  Google Scholar

[38]

S. VaddiK. AlfriendS. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268.   Google Scholar

[39]

A. Vinodkumar and A. Anguraj, Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.  doi: 10.1016/j.nahs.2011.04.002.  Google Scholar

[40]

X. T. WuY. Tang and W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.  doi: 10.1016/j.automatica.2016.01.002.  Google Scholar

[41]

T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001.  Google Scholar

[42]

B. Zhou, On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.  doi: 10.1016/j.automatica.2015.12.030.  Google Scholar

Figure 1.  The state trajectories of $ x_{i}(t) $ $ (i = 1,2) $ without impulsive effects in Example 1
Figure 2.  The trajectories of states $ x_{i}(t) $ $ (i = 1,2) $ with different impulsive sequences in Example 1
[1]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[2]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[3]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[4]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[5]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[8]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[9]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[10]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[11]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[12]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[13]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[18]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[19]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[20]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (126)
  • HTML views (329)
  • Cited by (0)

Other articles
by authors

[Back to Top]