
-
Previous Article
Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds
- DCDS-B Home
- This Issue
-
Next Article
On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease
Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks
a. | Department of Mathematics Hunan First Normal University, Changsha, Hunan 410205, China |
b. | School of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China |
c. | ool of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China c Jiangsu Provincial Key Laboratory of Networked Collective Intelligence Southeast University, Nanjing, Jiangsu 210096, China |
d. | Department of Information Technology, Hunan Women's University Changsha, Hunan 410002, China |
e. | School of Mathematics and Statistics, Changsha University of Science and Technology Changsha, Hunan 410114, China |
In this article, we present several results on Finite-Time Stability (FTS) of impulsive differential inclusion. In order to investigate the FTS problem, a new concept of Finite-Time Stable Function Pair (FTSFP) is proposed. By virtue of average impulsive interval and FTSFP, two unified criteria on FTS of impulsive differential inclusion are obtained, which are effective for both the destabilizing impulses and the stabilizing impulses. In addition, the settling-time depends not only on the initial value, but also on the information of impulsive sequence. As an extension, a delay-independent FTS result of impulsive delayed differential inclusion is presented. Finally, the obtained results are applied to study the FTS of discontinuous impulsive neural networks.
References:
[1] |
N. Abada, M. Benchohra and H. Hammouche,
Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.
doi: 10.1016/j.jde.2009.03.004. |
[2] |
J. Abderrahim nd E. Vilches,
A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.
doi: 10.1016/j.jde.2018.10.024. |
[3] |
W. Allegretto, D. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125. Google Scholar |
[4] |
F. Amato, G. De Tommasi and A. Pironti,
Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[5] |
R. Ambrosino, F. Calabrese, C. Cosentino and G. Tommasi,
Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.
doi: 10.1109/TAC.2008.2010965. |
[6] |
J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[7] |
G. Ballinger and X. Z. Liu,
Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.
|
[8] |
J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar |
[9] |
G. Chen, Y. Yang and J. Li,
Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.
doi: 10.1049/iet-cta.2010.0259. |
[10] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[11] |
S. Djebali, L. Gorniewicz and A. Ouahab,
First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.
doi: 10.1016/j.mcm.2010.04.016. |
[12] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[13] |
M. Forti and P. Nistri,
Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.
doi: 10.1109/TCSI.2003.818614. |
[14] |
M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463. Google Scholar |
[15] |
H. Fujisaka and T. Yamada,
Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[16] |
G. Haddad,
Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.
doi: 10.1016/0022-0396(81)90031-0. |
[17] |
G. Haddad,
Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.
doi: 10.1016/0362-546X(81)90111-5. |
[18] |
J. P. Hespanha, D. Liberzon and A. R. Teel,
Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.
doi: 10.1016/j.automatica.2008.03.021. |
[19] |
S. C. Hu, D. A. Kandilakis and N. S. Papageorgiou,
Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.
doi: 10.1090/S0002-9939-99-04338-5. |
[20] | L. Huang, Z. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011. Google Scholar |
[21] |
P. Hur, B. Duiser, S. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467. Google Scholar |
[22] |
X. D. Li, D. W. C. Ho and J. D. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[23] |
Y. C. Li and R. G. Sanfelice,
Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.
doi: 10.1016/j.automatica.2018.10.016. |
[24] |
J. X. Liu, L. G. Wu, C. W. Wu, W. S. Luo and L. Franquelo,
Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.
doi: 10.1016/j.automatica.2019.01.029. |
[25] |
K.-Z. Liu, X.-M. Sun, J. Liu and R. Andrew,
Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.
doi: 10.1109/TAC.2015.2507782. |
[26] |
W. L. Lu and T. P. Chen,
Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.
doi: 10.1162/neco.2008.10-06-364. |
[27] |
J. Q Lu, D. W. C. Ho and J. D. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[28] |
E. Moulay and W. Perruquetti,
Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.
doi: 10.1093/imamci/dni039. |
[29] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[30] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti,
Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[31] |
J. Nygren and K. Pelckmans,
A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.
doi: 10.1016/j.automatica.2018.06.038. |
[32] |
B. E. Paden and S. S. Sastry,
A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.
doi: 10.1109/TCS.1987.1086038. |
[33] |
S. G. Peng, F. Q. Deng and Y. Zhang,
A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.
doi: 10.1016/j.sysconle.2018.04.002. |
[34] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.
doi: 10.1109/TAC.2011.2179869. |
[35] |
A. Polyakov, D. Efimov and W. Perruquetti,
Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.
doi: 10.1016/j.automatica.2014.10.082. |
[36] |
S. T. Qin and X. P. Xue,
Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.
doi: 10.1016/j.jmaa.2014.11.057. |
[37] |
E. Serpelloni, M. Maggiore and C. Damaren,
Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.
doi: 10.1016/j.automatica.2016.02.028. |
[38] |
S. Vaddi, K. Alfriend, S. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268. Google Scholar |
[39] |
A. Vinodkumar and A. Anguraj,
Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.
doi: 10.1016/j.nahs.2011.04.002. |
[40] |
X. T. Wu, Y. Tang and W. B. Zhang,
Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.
doi: 10.1016/j.automatica.2016.01.002. |
[41] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001. |
[42] |
B. Zhou,
On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.
doi: 10.1016/j.automatica.2015.12.030. |
show all references
References:
[1] |
N. Abada, M. Benchohra and H. Hammouche,
Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, 246 (2009), 3834-3863.
doi: 10.1016/j.jde.2009.03.004. |
[2] |
J. Abderrahim nd E. Vilches,
A differential equation approach to implicit sweeping processes, J. Differential Equations, 266 (2019), 5168-5184.
doi: 10.1016/j.jde.2018.10.024. |
[3] |
W. Allegretto, D. Papini and M. Forti, Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks, IEEE Trans. Neural Netw., 21 (2010), 1110-1125. Google Scholar |
[4] |
F. Amato, G. De Tommasi and A. Pironti,
Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica J. IFAC, 49 (2013), 2546-2550.
doi: 10.1016/j.automatica.2013.04.004. |
[5] |
R. Ambrosino, F. Calabrese, C. Cosentino and G. Tommasi,
Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE Trans. Automat. Control, 54 (2009), 861-865.
doi: 10.1109/TAC.2008.2010965. |
[6] |
J.-P. Aubin and A. Cellina., Differential Inclusions. Set-Valued Functions and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264. Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[7] |
G. Ballinger and X. Z. Liu,
Existence and uniqueness results for impulsive delay differential equation, Dyn. Contin. Discrete Impuls. Syst., 5 (1999), 579-591.
|
[8] |
J. Cao, G. Stamov, I. Stamova and S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., (2020), http://dx.doi.org/10.1109/TCYB.2020.2967625. Google Scholar |
[9] |
G. Chen, Y. Yang and J. Li,
Finite time stability of a class of hybrid dynamical systems, IET Control Theory Appl., 6 (2012), 8-13.
doi: 10.1049/iet-cta.2010.0259. |
[10] |
G. Craciun,
Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geometry, 3 (2019), 87-106.
doi: 10.1137/17M1129076. |
[11] |
S. Djebali, L. Gorniewicz and A. Ouahab,
First-order perodic impulsive semilinear differential inclusions: Existence and structure of solution sets, Math. Comput. Modelling., 52 (2010), 683-714.
doi: 10.1016/j.mcm.2010.04.016. |
[12] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[13] |
M. Forti and P. Nistri,
Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 1421-1435.
doi: 10.1109/TCSI.2003.818614. |
[14] |
M. Forti and D. Papini, Global exponential stability and global convergence in finite time of delayed neural network with infinite gain, IEEE Trans. Neural Netw., 16 (2005), 1449-1463. Google Scholar |
[15] |
H. Fujisaka and T. Yamada,
Stability theory of synchronized motion in coupled-oscillator systems, Progr. Theoret. Phys., 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[16] |
G. Haddad,
Monotone viable trajectories for functional differential inclusions, J. Differential Equations, 41 (1981), 1-24.
doi: 10.1016/0022-0396(81)90031-0. |
[17] |
G. Haddad,
Topological propertyies of the sets of solutions for functional differntial inclusion, Nonlinear Anal., 39 (1981), 1349-1366.
doi: 10.1016/0362-546X(81)90111-5. |
[18] |
J. P. Hespanha, D. Liberzon and A. R. Teel,
Lyapuov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44 (2008), 2735-2744.
doi: 10.1016/j.automatica.2008.03.021. |
[19] |
S. C. Hu, D. A. Kandilakis and N. S. Papageorgiou,
Periodic solutions for nonconvex differential inclusions, Proc. Amer. Math. Soc., 127 (1999), 89-94.
doi: 10.1090/S0002-9939-99-04338-5. |
[20] | L. Huang, Z. Guo and J. Wang, Theory and Applications of Differential Equations with Discontinuous Right-hand Sides, Science Press, Beijing, 2011. Google Scholar |
[21] |
P. Hur, B. Duiser, S. Salapaka and E. Weckster, Measuring robustness of the postural control system to a mild impulsive perturbation, IEEE Trans Neur. Syst. Rehab. Engin., 18 (2010), 461-467. Google Scholar |
[22] |
X. D. Li, D. W. C. Ho and J. D. Cao,
Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.
doi: 10.1016/j.automatica.2018.10.024. |
[23] |
Y. C. Li and R. G. Sanfelice,
Finite time stability of sets for hybrid dynamical systems, Automatica J. IFAC, 100 (2019), 200-211.
doi: 10.1016/j.automatica.2018.10.016. |
[24] |
J. X. Liu, L. G. Wu, C. W. Wu, W. S. Luo and L. Franquelo,
Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica J. IFAC, 103 (2019), 261-273.
doi: 10.1016/j.automatica.2019.01.029. |
[25] |
K.-Z. Liu, X.-M. Sun, J. Liu and R. Andrew,
Stability theorems for delayed differential inclusions, IEEE Trans. Autom. Control., 61 (2016), 3215-3220.
doi: 10.1109/TAC.2015.2507782. |
[26] |
W. L. Lu and T. P. Chen,
Almost periodic dynamics of a class of delayed neural networks with discontinuous activations, Neural Comput., 20 (2008), 1065-1090.
doi: 10.1162/neco.2008.10-06-364. |
[27] |
J. Q Lu, D. W. C. Ho and J. D. Cao,
A unified synchronization criterion for impulsive dynamical networks, Automatica J. IFAC, 46 (2010), 1215-1221.
doi: 10.1016/j.automatica.2010.04.005. |
[28] |
E. Moulay and W. Perruquetti,
Finite time stability of differential inclusions, IMA J. Math. Control Inform., 22 (2005), 465-475.
doi: 10.1093/imamci/dni039. |
[29] |
E. Moulay and W. Perruquetti,
Finite time stability and stabilization of a class of conitnuous systems, J. Math. Anal. Appl., 323 (2006), 1430-1443.
doi: 10.1016/j.jmaa.2005.11.046. |
[30] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti,
Finite time stability and stabilization of time-delayed systems, Systems Control Lett., 57 (2008), 561-566.
doi: 10.1016/j.sysconle.2007.12.002. |
[31] |
J. Nygren and K. Pelckmans,
A stability criterion for switching Lur'e systems with switching-path restrictions, Automatica J. IFAC, 96 (2018), 337-341.
doi: 10.1016/j.automatica.2018.06.038. |
[32] |
B. E. Paden and S. S. Sastry,
A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator, IEEE Trans. Circuits Syst., 34 (1987), 73-82.
doi: 10.1109/TCS.1987.1086038. |
[33] |
S. G. Peng, F. Q. Deng and Y. Zhang,
A unified Razumikhin-type criteria on input-to-state stability of time-varying impulsive delayed system, Systems Control Lett., 216 (2018), 20-26.
doi: 10.1016/j.sysconle.2018.04.002. |
[34] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Auto. Contr., 57 (2012), 2106-2100.
doi: 10.1109/TAC.2011.2179869. |
[35] |
A. Polyakov, D. Efimov and W. Perruquetti,
Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica J. IFAC, 51 (2015), 332-340.
doi: 10.1016/j.automatica.2014.10.082. |
[36] |
S. T. Qin and X. P. Xue,
Periodic solutions for nonlinear differential inclusions with multivalued perturbations, J. Math, Anal. Appl., 424 (2015), 988-1005.
doi: 10.1016/j.jmaa.2014.11.057. |
[37] |
E. Serpelloni, M. Maggiore and C. Damaren,
Bang-bang hybrid stabilization of perturbed double-integrators, Automatica J. IFAC, 69 (2016), 315-323.
doi: 10.1016/j.automatica.2016.02.028. |
[38] |
S. Vaddi, K. Alfriend, S. Vadali and P. Sengupta., Formation establishment and reconfiguration using impulsive control, J. Guid Control. Dynam., 28 (2005), 262-268. Google Scholar |
[39] |
A. Vinodkumar and A. Anguraj,
Existence of random impulsive abstract neutral non-autonomous differeential inclusions with delayes, Nonlinear Anal. Hybrid Syst., 5 (2011), 413-426.
doi: 10.1016/j.nahs.2011.04.002. |
[40] |
X. T. Wu, Y. Tang and W. B. Zhang,
Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica J. IFAC, 66 (2016), 195-2014.
doi: 10.1016/j.automatica.2016.01.002. |
[41] |
T. Yang, Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272. Springer-Verlag, Berlin, 2001. |
[42] |
B. Zhou,
On asymptotic stability of linear time-varying systems, Automatica J. IFAC, 68 (2016), 266-276.
doi: 10.1016/j.automatica.2015.12.030. |


[1] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[2] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[3] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[4] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[5] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[6] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[7] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[8] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[9] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[10] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[11] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[12] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[13] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[14] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021004 |
[15] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[16] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[17] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[18] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[19] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[20] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]