
-
Previous Article
A nonisothermal thermodynamical model of liquid-vapor interaction with metastability
- DCDS-B Home
- This Issue
-
Next Article
Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations
Properties of basins of attraction for planar discrete cooperative maps
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816, USA |
It is shown that locally asymptotically stable equilibria of planar cooperative or competitive maps have basin of attraction $ \mathcal{B} $ with relatively simple geometry: the boundary of each component of $ \mathcal{B} $ consists of the union of two unordered curves, and the components of $ \mathcal{B} $ are not comparable as sets. The boundary curves are Lipschitz if the map is of class $ C^1 $. Further, if a periodic point is in $ \partial \mathcal{B} $, then $ \partial\mathcal{B} $ is tangential to the line through the point with direction given by the eigenvector associated with the smaller characteristic value of the map at the point. Examples are given.
References:
[1] |
A. Berger and A. Duh,
Global saddle-type dynamics for convex second-order difference equations, J. Difference Equ. Appl., 23 (2017), 1807-1823.
doi: 10.1080/10236198.2017.1367390. |
[2] |
A. Brett and M. R. S. Kulenović,
Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211-233.
|
[3] |
A. Cima, A. Gasull and V. Mañosa,
Basin of attraction of triangular maps with applications, J. Difference Equ. Appl., 20 (2014), 423-437.
doi: 10.1080/10236198.2013.852187. |
[4] |
S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect III: Multispecies, J. Biol. Dyn., 12 (2018), 271-287.
doi: 10.1080/17513758.2018.1439537. |
[5] |
S. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[6] |
M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović,
Basins of attraction of certain homogeneous second order quadratic fractional difference equation, J. Concr. Appl. Math., 13 (2015), 35-50.
|
[7] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. |
[8] |
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[9] |
M. W. Hirsch and H. Smith,
Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Elsevier B. V., Amsterdam, 2 (2005), 239-357.
|
[10] |
M. W. Hirsch and H. Smith,
Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379-398.
doi: 10.1080/10236190412331335445. |
[11] |
G. L. Karakostas,
The dynamics of a cooperative difference system with coefficient a Metzler matrix, J. Difference Equ. Appl., 20 (2014), 685-693.
doi: 10.1080/10236198.2013.799153. |
[12] |
M. R. S. Kulenović and O. Merino,
Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.
doi: 10.3934/dcdsb.2009.12.133. |
[13] |
M. R. S. Kulenović and O. Merino,
Invariant manifolds for planar competitive and cooperative maps, J. Difference Equ. Appl., 24 (2018), 898-915.
doi: 10.1080/10236198.2018.1438418. |
[14] |
M. R. S. Kulenović, O. Merino and M. Nurkanović,
Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 18 (2012), 1951-1966.
doi: 10.1080/10236198.2011.605357. |
[15] |
M. R. S. Kulenović, S. Moranjkić and Z. Nurkanović,
Global dynamics and bifurcation of a perturbed sigmoid Beverton-Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696-2715.
doi: 10.1002/mma.3722. |
[16] |
G. Livadiotis, L. Assas, S. Elaydi, E. Kwessi and D. Ribble,
Competition models with the Allee effect, J. Difference Equ. Appl., 20 (2015), 1127-1151.
doi: 10.1080/10236198.2014.897341. |
[17] |
S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke,
Fractal basin boundaries, Phys. D, 17 (1985), 125-153.
doi: 10.1016/0167-2789(85)90001-6. |
[18] |
J. W. Milnor, Attractor, Scholarpedia, 1 (2006), 1815. Google Scholar |
[19] |
H. E. Nusse and J. A. Yorke,
Basins of attraction, Science, 271 (1996), 1376-1380.
doi: 10.1126/science.271.5254.1376. |
[20] |
H. E. Nusse and J. A. Yorke,
The structure of basins of attraction and their trapping regions, Ergodic Theory Dynam. Systems, 17 (1997), 463-481.
doi: 10.1017/S0143385797069782. |
[21] |
H. E. Nusse and J. A. Yorke,
Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems, 23 (2003), 895-906.
doi: 10.1017/S0143385702001360. |
[22] |
H. E. Nusse and J. A. Yorke,
Bifurcations of basins of attraction from the view point of prime ends, Topology Appl., 154 (2007), 2567-2579.
doi: 10.1016/j.topol.2006.07.019. |
[23] |
H. L. Smith,
Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335-357.
doi: 10.1080/10236199708808108. |
show all references
References:
[1] |
A. Berger and A. Duh,
Global saddle-type dynamics for convex second-order difference equations, J. Difference Equ. Appl., 23 (2017), 1807-1823.
doi: 10.1080/10236198.2017.1367390. |
[2] |
A. Brett and M. R. S. Kulenović,
Basins of attraction of equilibrium points of monotone difference equations, Sarajevo J. Math., 5 (2009), 211-233.
|
[3] |
A. Cima, A. Gasull and V. Mañosa,
Basin of attraction of triangular maps with applications, J. Difference Equ. Appl., 20 (2014), 423-437.
doi: 10.1080/10236198.2013.852187. |
[4] |
S. Elaydi, E. Kwessi and G. Livadiotis,
Hierarchical competition models with the Allee effect III: Multispecies, J. Biol. Dyn., 12 (2018), 271-287.
doi: 10.1080/17513758.2018.1439537. |
[5] |
S. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[6] |
M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović,
Basins of attraction of certain homogeneous second order quadratic fractional difference equation, J. Concr. Appl. Math., 13 (2015), 35-50.
|
[7] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. |
[8] |
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[9] |
M. W. Hirsch and H. Smith,
Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Elsevier B. V., Amsterdam, 2 (2005), 239-357.
|
[10] |
M. W. Hirsch and H. Smith,
Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379-398.
doi: 10.1080/10236190412331335445. |
[11] |
G. L. Karakostas,
The dynamics of a cooperative difference system with coefficient a Metzler matrix, J. Difference Equ. Appl., 20 (2014), 685-693.
doi: 10.1080/10236198.2013.799153. |
[12] |
M. R. S. Kulenović and O. Merino,
Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.
doi: 10.3934/dcdsb.2009.12.133. |
[13] |
M. R. S. Kulenović and O. Merino,
Invariant manifolds for planar competitive and cooperative maps, J. Difference Equ. Appl., 24 (2018), 898-915.
doi: 10.1080/10236198.2018.1438418. |
[14] |
M. R. S. Kulenović, O. Merino and M. Nurkanović,
Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 18 (2012), 1951-1966.
doi: 10.1080/10236198.2011.605357. |
[15] |
M. R. S. Kulenović, S. Moranjkić and Z. Nurkanović,
Global dynamics and bifurcation of a perturbed sigmoid Beverton-Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696-2715.
doi: 10.1002/mma.3722. |
[16] |
G. Livadiotis, L. Assas, S. Elaydi, E. Kwessi and D. Ribble,
Competition models with the Allee effect, J. Difference Equ. Appl., 20 (2015), 1127-1151.
doi: 10.1080/10236198.2014.897341. |
[17] |
S. W. McDonald, C. Grebogi, E. Ott and J. A. Yorke,
Fractal basin boundaries, Phys. D, 17 (1985), 125-153.
doi: 10.1016/0167-2789(85)90001-6. |
[18] |
J. W. Milnor, Attractor, Scholarpedia, 1 (2006), 1815. Google Scholar |
[19] |
H. E. Nusse and J. A. Yorke,
Basins of attraction, Science, 271 (1996), 1376-1380.
doi: 10.1126/science.271.5254.1376. |
[20] |
H. E. Nusse and J. A. Yorke,
The structure of basins of attraction and their trapping regions, Ergodic Theory Dynam. Systems, 17 (1997), 463-481.
doi: 10.1017/S0143385797069782. |
[21] |
H. E. Nusse and J. A. Yorke,
Characterizing the basins with the most entangled boundaries, Ergodic Theory Dynam. Systems, 23 (2003), 895-906.
doi: 10.1017/S0143385702001360. |
[22] |
H. E. Nusse and J. A. Yorke,
Bifurcations of basins of attraction from the view point of prime ends, Topology Appl., 154 (2007), 2567-2579.
doi: 10.1016/j.topol.2006.07.019. |
[23] |
H. L. Smith,
Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335-357.
doi: 10.1080/10236199708808108. |








[1] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[2] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[3] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[4] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[5] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[6] |
Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020361 |
[7] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[8] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[9] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[10] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[11] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[12] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[13] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[14] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[15] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[16] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[17] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[18] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[19] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[20] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]