May  2021, 26(5): 2857-2877. doi: 10.3934/dcdsb.2020208

Periodic forcing on degenerate Hopf bifurcation

Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author: renjl@zzu.edu.cn

Received  October 2019 Revised  April 2020 Published  July 2020

This paper is devoted to the effect of periodic forcing on a system exhibiting a degenerate Hopf bifurcation. Two methods are employed to investigate bifurcations of periodic solution for the periodically forced system. It is obtained by averaging method that the system undergoes fold bifurcation, transcritical bifurcation, and even degenerate Hopf bifurcation of periodic solution. On the other hand, it is also shown by Poincaré map that the system will undergo fold bifurcation, transcritical bifurcation, Neimark-Sacker bifurcation and flip bifurcation. Finally, we make a comparison between these two methods.

Citation: Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208
References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

show all references

References:
[1]

F. BarraquandS. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092.   Google Scholar

[2]

A. K. Bajaj, Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.  doi: 10.1016/0022–247X(86)90035–1.  Google Scholar

[3]

J. H. Bao and Q. G. Yang, A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.  doi: 10.1016/j.amc.2011.01.032.  Google Scholar

[4]

E. BenincàB. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394.   Google Scholar

[5]

S. N. Chow and M. P. John, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.  doi: 10.1016/0022–0396(77)90101–2.  Google Scholar

[6]

Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp. doi: 10.1007/s00009–018–1184–y.  Google Scholar

[7]

Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp. doi: 10.1007/s11784–020–0774–z.  Google Scholar

[8]

E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar

[9]

W. W. FarrC. Z. LiI. S. Labouriau and W. F. Langford, Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.  doi: 10.1137/0520002.  Google Scholar

[10]

J. M. González–Miranda, On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.  doi: 10.1016/j.jtbi.2013.06.027.  Google Scholar

[11]

P. Gross, On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.  doi: 10.1093/imamat/50.1.1.  Google Scholar

[12]

L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991. doi: 10.1007/978–1–4684–0392–3.  Google Scholar

[13]

J. M. Gambaudo, Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.  doi: 10.1016/0022–0396(85)90076–2.  Google Scholar

[14]

W. L. Kath, Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.  doi: 10.1002/sapm198165295.  Google Scholar

[15]

Y. A. KuznetsovS. Muratori and S. Rinaldi, Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.  doi: 10.1142/S0218127492000112.  Google Scholar

[16]

X. P. LiJ. L. Ren and S. A. Campbell, How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.  Google Scholar

[17]

M. A. McKarninL. D. Schmidt and R. Aris, Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.  doi: 10.1016/0009–2509(88)80026–5.  Google Scholar

[18]

N. S. Namachchivaya and S. T. Ariaratnam, Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.  doi: 10.1137/0147002.  Google Scholar

[19]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[20]

J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp. doi: 10.1063/1.5000152.  Google Scholar

[21]

J. L. Ren and L. P. Yu, Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332–016–9323–8.  Google Scholar

[22]

J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp. doi: 10.1142/S0218127416502035.  Google Scholar

[23]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.  doi: 10.1002/sapm19806311.  Google Scholar

[24]

S. Rosenblat and D. S. Cohen, Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.  doi: 10.1002/sapm1981642143.  Google Scholar

[25]

A. Rego–CostaF. Debarre and L. M. Chevin, Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.  doi: 10.1111/evo.13407.  Google Scholar

[26]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007.  Google Scholar

[27]

Y. W. TaoX. P. Li and J. L. Ren, A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.  doi: 10.1007/s11071–018–4506–5.  Google Scholar

[28]

Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996. doi: 10.1142/9789812830548.  Google Scholar

[29]

D. M. Xiao and H. P. Zhu, Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.  doi: 10.1137/050623449.  Google Scholar

[30]

Y. Y. Zhang and M. Golubitsky, Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.  doi: 10.1137/10078637X.  Google Scholar

Figure 1.  (a) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.42 $, $ a_{2} = 0.6 $, $ b_{1} = 1.0857 $, $ b_{2} = 0.25 $. (b) Phase portrait near a degenerate Hopf bifurcation for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.447 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $
Figure 2.  Phase portrait of the averaged system, the red points are the equilibria. (a) For $ \mu = 0.06 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $. (b) For $ \mu = 0 $, $ \nu = 3 $, $ \alpha = 1 $, $ \beta = 2 $
Figure 3.  (b) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 1.13,r_{2} = 0.6,a_{2} = 0.6,b_{2} = 0.25 $. (c) and (d) Partial enlargements of (b). The solutions of system (8) are as follows, region 1-unstable period-one solution and stable quasiperiodic solution; region 2-unstable period-one solution and unstable period-two solution; region 3-unstable period-one solution, unstable period-two solutions, and period-four solution; region 4-stable and unstable period-one solutions; region 5-stable and unstable period-one solutions
Figure 4.  (a) Bifurcation diagram of the forced system (8) in $ (a_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b), (c) Partial enlargements of (a). The solutions of system (8) are as follows, region 1-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 2-stable and unstable period-one solutions; region 3-unstable period-one solutions and stable quasiperiodic solution; region 4-no periodic solution; region 5-unstable period-one solutions and unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 5.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.2,r_{2} = 0.4,a_{2} = 0.4,b_{2} = 0.162 $. (b) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions, unstable quasiperiodic solution; region 2- unstable period-one solutions; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-unstable period-one solutions, stable period-two solutions; region 5-stable and unstable period-one solutions
Figure 6.  (a) Bifurcation diagram of the forced system (26) in $ (b_{1},\epsilon) $-plane for $ r_{1} = 0.3,b_{1} = 0.6,r_{2} = 0.4,a_{2} = 0.6,b_{2} = 0.4 $. (b) bifurcation curves of a period-one saddle. (c) and (d) Partial enlargements of (a). The solutions of system (26) are as follows, region 1-stable and unstable period-one solutions; region 2- unstable period-one solutions and stable quasiperiodic solution; region 3-unstable period-one solutions, unstable period-two solutions, and period-four solution; region 4-stable period-one solutions; region 5-unstable period-one solutions, unstable period-two solutions; region 6-stable and unstable period-one solutions
Figure 7.  (a) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.2, b_{1} = 0.5,r_{2} = 0.4, b_{2} = 0.162 $. (b) Bifurcation diagram of the forced system (27) in $ (a_{2},\epsilon) $-plane for $ r_{1} = 0.3, a_{1} = 0.6, b_{1} = 0.83, r_{2} = 0.4, b_{2} = 0.4 $
Figure 8.  Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for the case $ r_{1} = 0.3,a_{1} = 0.2,b_{1} = 0.83,r_{2} = 0.4,a_{2} = 0.4 $
Figure 9.  (a) Bifurcation diagram of the forced system (28) in $ (b_{2},\epsilon) $-plane for $ r_{1} = 0.3,a_{1} = 0.6,b_{1} = 0.85,r_{2} = 0.4,a_{2} = 0.6 $. (b), (c) and (d) Partial enlargements of (a). The solutions of system (28) are as follows, region 1-unstable period-one solution, unstable period-two solutions, and period-four solution or chaos in some subregion; region 2-stable and unstable period-one solution; region 3-unstable period-one solution and stable quasiperiodic solution; region 4-unstable period-one solutions and unstable period-two solutions; region 5-stable and unstable period-one solutions; region 6-unstable period-one solution, unstable period-two solutions, and period-four solution
Figure 10.  Phase portraits and Poincaré section of the periodically forced system. (a) A stable period-two orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.337 $. (b) A stable period-four orbit in system (27) for $ r_{1} = 0.3 $, $ r_{2} = 0.4 $, $ a_{1} = 0.6 $, $ a_{2} = 0.4 $, $ b_{1} = 0.83 $, $ b_{2} = 0.4 $, $ \epsilon = 0.277 $. (c) Torus in system (8) for $ r_{1} = 0.3 $, $ r_{2} = 0.6 $, $ a_{1} = 0.45183 $, $ a_{2} = 0.6 $, $ b_{1} = 1.13 $, $ b_{2} = 0.25 $, $ \epsilon = 0.277 $. (d) Poincaré section of the torus
[1]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[2]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[3]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[4]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

[5]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[6]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[7]

Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[12]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[13]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[16]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[19]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[20]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (98)
  • HTML views (296)
  • Cited by (0)

Other articles
by authors

[Back to Top]