
-
Previous Article
A blow-up result for the chemotaxis system with nonlinear signal production and logistic source
- DCDS-B Home
- This Issue
-
Next Article
Qualitative analysis of a generalized Nosé-Hoover oscillator
Periodic forcing on degenerate Hopf bifurcation
Henan Academy of Big Data, Zhengzhou University, Zhengzhou 450001, China |
This paper is devoted to the effect of periodic forcing on a system exhibiting a degenerate Hopf bifurcation. Two methods are employed to investigate bifurcations of periodic solution for the periodically forced system. It is obtained by averaging method that the system undergoes fold bifurcation, transcritical bifurcation, and even degenerate Hopf bifurcation of periodic solution. On the other hand, it is also shown by Poincaré map that the system will undergo fold bifurcation, transcritical bifurcation, Neimark-Sacker bifurcation and flip bifurcation. Finally, we make a comparison between these two methods.
References:
[1] |
F. Barraquand, S. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092. Google Scholar |
[2] |
A. K. Bajaj,
Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.
doi: 10.1016/0022–247X(86)90035–1. |
[3] |
J. H. Bao and Q. G. Yang,
A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.
doi: 10.1016/j.amc.2011.01.032. |
[4] |
E. Benincà, B. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394. Google Scholar |
[5] |
S. N. Chow and M. P. John,
Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.
doi: 10.1016/0022–0396(77)90101–2. |
[6] |
Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp.
doi: 10.1007/s00009–018–1184–y. |
[7] |
Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp.
doi: 10.1007/s11784–020–0774–z. |
[8] |
E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar |
[9] |
W. W. Farr, C. Z. Li, I. S. Labouriau and W. F. Langford,
Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.
doi: 10.1137/0520002. |
[10] |
J. M. González–Miranda,
On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.
doi: 10.1016/j.jtbi.2013.06.027. |
[11] |
P. Gross,
On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.
doi: 10.1093/imamat/50.1.1. |
[12] |
L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991.
doi: 10.1007/978–1–4684–0392–3. |
[13] |
J. M. Gambaudo,
Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.
doi: 10.1016/0022–0396(85)90076–2. |
[14] |
W. L. Kath,
Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.
doi: 10.1002/sapm198165295. |
[15] |
Y. A. Kuznetsov, S. Muratori and S. Rinaldi,
Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.
doi: 10.1142/S0218127492000112. |
[16] |
X. P. Li, J. L. Ren and S. A. Campbell,
How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.
doi: 10.3934/dcdsb.2018043. |
[17] |
M. A. McKarnin, L. D. Schmidt and R. Aris,
Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.
doi: 10.1016/0009–2509(88)80026–5. |
[18] |
N. S. Namachchivaya and S. T. Ariaratnam,
Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.
doi: 10.1137/0147002. |
[19] |
L. M. Perko,
Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.
doi: 10.1137/0117065. |
[20] |
J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp.
doi: 10.1063/1.5000152. |
[21] |
J. L. Ren and L. P. Yu,
Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.
doi: 10.1007/s00332–016–9323–8. |
[22] |
J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp.
doi: 10.1142/S0218127416502035. |
[23] |
S. Rosenblat and D. S. Cohen,
Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.
doi: 10.1002/sapm19806311. |
[24] |
S. Rosenblat and D. S. Cohen,
Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.
doi: 10.1002/sapm1981642143. |
[25] |
A. Rego–Costa, F. Debarre and L. M. Chevin,
Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.
doi: 10.1111/evo.13407. |
[26] |
J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007. |
[27] |
Y. W. Tao, X. P. Li and J. L. Ren,
A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.
doi: 10.1007/s11071–018–4506–5. |
[28] |
Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996.
doi: 10.1142/9789812830548. |
[29] |
D. M. Xiao and H. P. Zhu,
Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.
doi: 10.1137/050623449. |
[30] |
Y. Y. Zhang and M. Golubitsky,
Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.
doi: 10.1137/10078637X. |
show all references
References:
[1] |
F. Barraquand, S. Louca and K. C. Abbott, Moving forward in circles: Challenges and opportunities in modelling population cycles, Ecol. Lett., 20 (2017), 1074-1092. Google Scholar |
[2] |
A. K. Bajaj,
Resonant parametric perturbations of the Hopf bifurcation, J. Math. Anal. Appl., 115 (1986), 214-224.
doi: 10.1016/0022–247X(86)90035–1. |
[3] |
J. H. Bao and Q. G. Yang,
A new method to find homoclinic and heteroclinic orbits, Appl. Math. Comput., 217 (2011), 6526-6540.
doi: 10.1016/j.amc.2011.01.032. |
[4] |
E. Benincà, B. Ballantine and S. P. Ellner, Species fluctuations sustained by a cyclic succession at the edge of chaos, P. Natl. Acad. Sci. USA, 112 (2015), 6389-6394. Google Scholar |
[5] |
S. N. Chow and M. P. John,
Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112-159.
doi: 10.1016/0022–0396(77)90101–2. |
[6] |
Z. B. Cheng and F. F. Li, Positive periodic solutions for a kind of second–order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Paper No. 134, 19 pp.
doi: 10.1007/s00009–018–1184–y. |
[7] |
Z. B. Cheng and Q. G. Yuan, Damped superlinear duffing equation with strong singularity of repulsive type, J. Fix. Piont Theory A, 22 (2020), Paper No. 37, 18 pp.
doi: 10.1007/s11784–020–0774–z. |
[8] |
E. J. Doedel and B. E. Oldeman, AUTO–07P: continuation and bifurcation software for ordinary differential equations, http://cmvl.cs.concordia.ca/auto., 2012. Google Scholar |
[9] |
W. W. Farr, C. Z. Li, I. S. Labouriau and W. F. Langford,
Degenerate Hopf bifurcation formulas and Hilbert's 16th problem, SIAM J. Math. Anal., 20 (1989), 13-30.
doi: 10.1137/0520002. |
[10] |
J. M. González–Miranda,
On the effect of circadian oscillations on biochemical cell signaling by NF–B, J. Theor. Biol., 335 (2013), 283-294.
doi: 10.1016/j.jtbi.2013.06.027. |
[11] |
P. Gross,
On harmonic resonance in forced nonlinear oscillators exhibiting a Hopf bifurcation, IMA J. Appl. Math., 50 (1993), 1-12.
doi: 10.1093/imamat/50.1.1. |
[12] |
L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991.
doi: 10.1007/978–1–4684–0392–3. |
[13] |
J. M. Gambaudo,
Perturbation of a Hopf bifurcation by an external time–periodic forcing, J. Differ. Equations, 57 (1985), 172-199.
doi: 10.1016/0022–0396(85)90076–2. |
[14] |
W. L. Kath,
Resonance in periodically perturbed Hopf bifurcation, Stud. Appl. Math., 65 (1981), 95-112.
doi: 10.1002/sapm198165295. |
[15] |
Y. A. Kuznetsov, S. Muratori and S. Rinaldi,
Bifurcations and chaos in a periodic predator–prey model, Int. J. Bifurcat. Chaos, 2 (1992), 117-128.
doi: 10.1142/S0218127492000112. |
[16] |
X. P. Li, J. L. Ren and S. A. Campbell,
How seasonal forcing influences the complexity of a predator–prey system, Discrete Cont. Dyn.–B, 23 (2018), 785-807.
doi: 10.3934/dcdsb.2018043. |
[17] |
M. A. McKarnin, L. D. Schmidt and R. Aris,
Response of nonlinear oscillators to forced oscillations: Three chemical reaction case studies, Chem. Eng. Sci., 43 (1988), 2833-2844.
doi: 10.1016/0009–2509(88)80026–5. |
[18] |
N. S. Namachchivaya and S. T. Ariaratnam,
Periodically Perturbed Hopf Bifurcation, SIAM J. Appl. Math., 47 (1987), 15-39.
doi: 10.1137/0147002. |
[19] |
L. M. Perko,
Higher order averaging and related methods for perturbed periodic and quasi–periodic systems, SIAM J. Appl. Math., 17 (1969), 698-724.
doi: 10.1137/0117065. |
[20] |
J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 083124, 15pp.
doi: 10.1063/1.5000152. |
[21] |
J. L. Ren and L. P. Yu,
Codimension–two bifurcation, chaos control in a discrete–time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.
doi: 10.1007/s00332–016–9323–8. |
[22] |
J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator–prey model with generalized Holling type Ⅳ functional response, Int. J. Bifurcat. Chaos, 26 (2016), 1650203, 19pp.
doi: 10.1142/S0218127416502035. |
[23] |
S. Rosenblat and D. S. Cohen,
Periodically perturbed bifurcation–1. Simple bifurcation, Stud. Appl. Math., 63 (1980), 1-23.
doi: 10.1002/sapm19806311. |
[24] |
S. Rosenblat and D. S. Cohen,
Periodically perturbed bifurcation. Ⅱ. Hopf bifurcation, Stud. Appl. Math., 64 (1981), 143-175.
doi: 10.1002/sapm1981642143. |
[25] |
A. Rego–Costa, F. Debarre and L. M. Chevin,
Chaos and the (un)predictability of evolution in a changing environment, Evolution, 72 (2018), 375-385.
doi: 10.1111/evo.13407. |
[26] |
J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems(2nd edition), (Springer, New York, NY), 2007. |
[27] |
Y. W. Tao, X. P. Li and J. L. Ren,
A repeated yielding model under periodic perturbation., Nonlinear Dynam., 94 (2018), 2511-2525.
doi: 10.1007/s11071–018–4506–5. |
[28] |
Y. Takeuchi, Global Dynamical Properties of Lotka–Volterra Systems, (World Scientific), 1996.
doi: 10.1142/9789812830548. |
[29] |
D. M. Xiao and H. P. Zhu,
Multiple focus and Hopf bifurcations in a predator–prey system with nonmonotonic functional response, SIAM J. Appl. Math., 66 (2006), 802-819.
doi: 10.1137/050623449. |
[30] |
Y. Y. Zhang and M. Golubitsky,
Periodically forced Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 10 (2011), 1272-1306.
doi: 10.1137/10078637X. |










[1] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[2] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[3] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[6] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[7] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[8] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[9] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[10] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[11] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[12] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[13] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[14] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[15] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[16] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[17] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[18] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[19] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[20] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]