June  2021, 26(6): 2899-2920. doi: 10.3934/dcdsb.2020210

Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

* Corresponding author: Haiyan Yin

Received  March 2020 Revised  May 2020 Published  July 2020

Fund Project: The authors were supported by the National Natural Science Foundation of China(Grant Nos. #11601164, #11601165 and #11971183), the Natural Science Foundation of Fujian Province of China(Grant No. 2017J05007), and the Fundamental Research Funds for the Central Universities(Grant No. ZQN-701), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No. ZQN-PY602)

In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the one-dimensional compressible isentropic micropolar fluid model in a half line $ \mathbb{R}_{+}: = (0, \infty). $ We mainly investigate the unique existence, the asymptotic stability and convergence rates of stationary solutions to the outflow problem for this model. We obtain the convergence rates of global solutions towards corresponding stationary solutions if the initial perturbation belongs to the weighted Sobolev space. The proof is based on the weighted energy method by taking into account the effect of the microrotational velocity on the viscous compressible fluid.

Citation: Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210
References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[2]

M. T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal., Real World Appl., 13 (2012), 850–859. doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. Chen, B. Huang and J. W. Zhang, Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1–11. doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

H. B. Cui and H. Y. Yin, Stability of the composite wave for the inflow problem on the micropolar fluid model, Commun. Pure Appl. Anal., 16 (2017), 1265-1292.  doi: 10.3934/cpaa.2017062.  Google Scholar

[7]

H. B. Cui and H. Y. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[8]

B. Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[9]

I. Dra$\check{z}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[10]

I. Dra$\check{z}$i$\acute{c}$L. Sim$\check{c}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[11]

R. Duan, Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity, J. Math. Anal. Appl., 463 (2018), 477-495.  doi: 10.1016/j.jmaa.2018.03.009.  Google Scholar

[12]

R. Duan, Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity, Nonlinear Anal. Real World Appl., 42 (2018), 71-92.  doi: 10.1016/j.nonrwa.2017.12.006.  Google Scholar

[13]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[14]

[0-387-98620-0] A. C. Erigen, Microcontinuum Field Theories: I. Foundations and Solids, Springer. New York., 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[15]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation, J. Differential Equations, 246 (2009), 4077-4096.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[16]

L. Huang and D. Y. Nie, Exponential stability for a one-dimensional compressible viscous micropolar fluid, Math. Methods Appl. Sci., 38 (2015), 5197–5206. doi: 10.1002/mma.3445.  Google Scholar

[17]

J. Jin and R. Duan, Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model, J. Math. Anal. Appl., 450 (2017), 1123-1143.  doi: 10.1016/j.jmaa.2016.12.085.  Google Scholar

[18]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97–127. doi: 10.1007/BF01212358.  Google Scholar

[19]

S. KawashimaT. NakamuraS. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235.  doi: 10.1142/S0218202510004908.  Google Scholar

[20]

S. KawashimaS. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[21]

Q. Q. Liu and H. Y. Yin, Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model, Nonlinear Anal.: Theory, Methods Appl., 149 (2017), 41-55.  doi: 10.1016/j.na.2016.10.009.  Google Scholar

[22]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634–7661. doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[24]

[0-8176-4008-8] G. Lukaszewicz, Micropolar fluids. Theory and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh${\rm{\ddot a}}$user, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.   Google Scholar

[26]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146 (1999), 1-22.  doi: 10.1007/s002050050134.  Google Scholar

[27]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[28]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71–91.  Google Scholar

[29]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[30]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[31]

N. Mujakovi$\acute{c}$, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[32]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, Proceedings of the Conference on Applied Mathematics and Scientific Computing, 253–262, Springer, Dordrecht, 2005. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[33]

N. Mujakovi$\acute{c}$, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat., 53 (2007), 361-379.  doi: 10.1007/s11565-007-0023-z.  Google Scholar

[34]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Article ID 189748, 15pp. doi: 10.1155/2008/189748.  Google Scholar

[35]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[36]

N. Mujakovi$\acute{c}$, One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem, Bound. Value Probl., (2010), Article ID 796065, 21pp. doi: 10.1155/2010/796065.  Google Scholar

[37]

N. Mujakovi$\acute{c}$, The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature, Nonlinear Anal. Real World Appl., 19 (2014), 19-30.  doi: 10.1016/j.nonrwa.2014.02.006.  Google Scholar

[38]

T. NakamuraS. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[39]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651–670. doi: 10.1142/S0219891611002524.  Google Scholar

[40]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107–132.  Google Scholar

[41]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. Real World Appl., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[42]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal., Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[43]

Z. G. Wu and W. K. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differential Equations, 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

[44]

H. Y. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), Paper No. 44, 13 pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

show all references

References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[2]

M. T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal., Real World Appl., 13 (2012), 850–859. doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. Chen, B. Huang and J. W. Zhang, Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1–11. doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

H. B. Cui and H. Y. Yin, Stability of the composite wave for the inflow problem on the micropolar fluid model, Commun. Pure Appl. Anal., 16 (2017), 1265-1292.  doi: 10.3934/cpaa.2017062.  Google Scholar

[7]

H. B. Cui and H. Y. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[8]

B. Q. DongJ. N. Li and J. H. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.  doi: 10.1016/j.jde.2016.11.029.  Google Scholar

[9]

I. Dra$\check{z}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[10]

I. Dra$\check{z}$i$\acute{c}$L. Sim$\check{c}$i$\acute{c}$ and N. Mujakovi$\acute{c}$, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[11]

R. Duan, Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity, J. Math. Anal. Appl., 463 (2018), 477-495.  doi: 10.1016/j.jmaa.2018.03.009.  Google Scholar

[12]

R. Duan, Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity, Nonlinear Anal. Real World Appl., 42 (2018), 71-92.  doi: 10.1016/j.nonrwa.2017.12.006.  Google Scholar

[13]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[14]

[0-387-98620-0] A. C. Erigen, Microcontinuum Field Theories: I. Foundations and Solids, Springer. New York., 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[15]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation, J. Differential Equations, 246 (2009), 4077-4096.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[16]

L. Huang and D. Y. Nie, Exponential stability for a one-dimensional compressible viscous micropolar fluid, Math. Methods Appl. Sci., 38 (2015), 5197–5206. doi: 10.1002/mma.3445.  Google Scholar

[17]

J. Jin and R. Duan, Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model, J. Math. Anal. Appl., 450 (2017), 1123-1143.  doi: 10.1016/j.jmaa.2016.12.085.  Google Scholar

[18]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97–127. doi: 10.1007/BF01212358.  Google Scholar

[19]

S. KawashimaT. NakamuraS. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate, Math. Models Methods Appl. Sci., 20 (2010), 2201-2235.  doi: 10.1142/S0218202510004908.  Google Scholar

[20]

S. KawashimaS. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Comm. Math. Phys., 240 (2003), 483-500.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[21]

Q. Q. Liu and H. Y. Yin, Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model, Nonlinear Anal.: Theory, Methods Appl., 149 (2017), 41-55.  doi: 10.1016/j.na.2016.10.009.  Google Scholar

[22]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634–7661. doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Long-time behavior of solution to the compressible micropolar fluids with external force, Nonlinear Anal. Real World Appl., 40 (2018), 361-376.  doi: 10.1016/j.nonrwa.2017.08.007.  Google Scholar

[24]

[0-8176-4008-8] G. Lukaszewicz, Micropolar fluids. Theory and applications. Modeling and Simulation in Science, Engineering and Technology, Birkh${\rm{\ddot a}}$user, Baston, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.   Google Scholar

[26]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146 (1999), 1-22.  doi: 10.1007/s002050050134.  Google Scholar

[27]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[28]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem, Glas. Mat. Ser. III, 33 (1998), 71–91.  Google Scholar

[29]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glas. Mat. Ser. III, 33 (1998), 199-208.   Google Scholar

[30]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[31]

N. Mujakovi$\acute{c}$, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[32]

N. Mujakovi$\acute{c}$, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, Proceedings of the Conference on Applied Mathematics and Scientific Computing, 253–262, Springer, Dordrecht, 2005. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[33]

N. Mujakovi$\acute{c}$, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem, Ann. Univ. Ferrara Sez. VII Sci. Mat., 53 (2007), 361-379.  doi: 10.1007/s11565-007-0023-z.  Google Scholar

[34]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Article ID 189748, 15pp. doi: 10.1155/2008/189748.  Google Scholar

[35]

N. Mujakovi$\acute{c}$, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[36]

N. Mujakovi$\acute{c}$, One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem, Bound. Value Probl., (2010), Article ID 796065, 21pp. doi: 10.1155/2010/796065.  Google Scholar

[37]

N. Mujakovi$\acute{c}$, The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature, Nonlinear Anal. Real World Appl., 19 (2014), 19-30.  doi: 10.1016/j.nonrwa.2014.02.006.  Google Scholar

[38]

T. NakamuraS. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line, J. Differential Equations, 241 (2007), 94-111.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[39]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyperbolic Differ. Equ., 8 (2011), 651–670. doi: 10.1142/S0219891611002524.  Google Scholar

[40]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107–132.  Google Scholar

[41]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. Real World Appl., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[42]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal., Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[43]

Z. G. Wu and W. K. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differential Equations, 265 (2018), 2544-2576.  doi: 10.1016/j.jde.2018.04.039.  Google Scholar

[44]

H. Y. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), Paper No. 44, 13 pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

[1]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[2]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[3]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[4]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[5]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[6]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[7]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[8]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[9]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

[10]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[11]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[12]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[13]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002

[14]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[15]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[16]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[17]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[18]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[19]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[20]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (60)
  • HTML views (291)
  • Cited by (0)

Other articles
by authors

[Back to Top]