\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control of leachate recirculation for anaerobic processes in landfills

  • * Corresponding author: Giorgio Martalò

    * Corresponding author: Giorgio Martalò 
Abstract Full Text(HTML) Figure(14) / Table(6) Related Papers Cited by
  • A mathematical model for the degradation of the organic fraction of solid waste in landfills, by means of an anaerobic bacterial population, is proposed. Additional phenomena, like hydrolysis of insoluble substrate and biomass decay, are taken into account. The evolution of the system is monitored by controlling the effects of leachate recirculation on the hydrolytic process. We investigate the optimal strategies to minimize substrate concentration and recirculation operation costs. Analytical and numerical results are presented and discussed for linear and quadratic cost functionals.

    Mathematics Subject Classification: Primary: 37N35, 37N40, 49J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portrait in absence of solubilization of the insoluble substrate ($ u\left(t\right) = 0 $ for any $ t>0 $). Bacterial growth is described by a Monod response function (10); parameters $ c = 0.417 $ and $ b = 0.19 $ are purely illustrative

    Figure 2.  Second component of equilibria versus the bifurcation parameter $ b $ in the case of Monod response function (10). Continuous and dashed lines denote stability and instability of equilibria, respectively. The bifurcation value is $ b^{*}\simeq0.705 $

    Figure 3.  Phase portrait for system (7), when the bifurcation parameter $ b $ is less (panel (a)) or greater (panel (b)) than the bifurcation value $ b^*\simeq 0.705 $. Bacterial growth is modeled by Monod growth function (10); parameters $ c = 0.417 $, $ c_h = 0.245 $, $ \theta = 0.3 $

    Figure 4.  State variables profiles and optimal control for objective functional (21), Monod response function (10) and configuration (22). Parameters are given in (20). The optimal control is of bang-bang type with a unique switch from 0 to 1 for $ t = t_s\simeq 5.25 $ (dashed line)

    Figure 5.  Optimal control $ u $ and scaled ($ \times 20 $) switching function $ \phi_1 $ for objective functional (21), when parameters and initial configuration are given in (20) and (22), respectively

    Figure 6.  State variables and optimal control for objective functional (21); initial soluble concentrations $ s_2^0 $ varies from $ 0.1 $ to $ 0.7 $, while parameter $ \alpha = 0.01 $ and initial insoluble substrate $ s_1^0 = 0.1 $ remain fixed

    Figure 7.  State variables and optimal control for objective functional (21); initial insoluble concentration $ s_1^0 $ varies from $ 0.1 $ to $ 0.4 $, while parameter $ \alpha = 0.01 $ and initial soluble substrate $ s_2^0 = 0.5 $ remain fixed

    Figure 8.  State variables and optimal control for objective functional (21), when the initial configuration is given by $ (s_1^0, s_2^0) = (0.8, 0.1) $ and $ \alpha = 0.01 $

    Figure 9.  Optimal controls for objective functional (21), $ \alpha = 0.001, 0.01, 0.1, 1 $ and given initial configuration $ (s_1^0, s_2^0) = (0.1, 0.5) $

    Figure 10.  State variables profiles and optimal control objective functional (24) with Monod response function (10). Initial configuration and parameter $ \alpha $ are given in (25); other parameters are given in (20)

    Figure 11.  Optimal control $ u $ and scaled ($ \times 20 $) switching function $ \phi_2 $ for objective functional (24), when parameter $ \alpha $ and initial configuration are given in (25); other parameters are given in (20)

    Figure 12.  State variables and optimal control for objective functional (24), for different values of $ s_2^0 $ ($ \alpha = 0.01 $, $ s_1^0 = 0.1 $)

    Figure 13.  State variables and optimal control for objective functional (24), for different values of $ s_1^0 $ ($ \alpha = 0.01 $, $ s_2^0 = 0.5 $)

    Figure 14.  Optimal controls for objective functional (24) and varying $ \alpha = 0.001, 0.01, 0.1, 1 $, when $ (s_1^0, s_2^0) = (0.1, 0.5) $

    Table 1.  Switching times and final substrate concentrations for objective functional (21), when soluble substrate $ s_2^0 $ varies ($ \alpha = \; 0.01 $, $ s_1^0 = 0.1) $

    $ s_2^{0} $ $ t_s $ $ s_1(t_f) $ $ s_2(t_f) $
    0.1 5.03 0.4031 0.1454
    0.3 5.10 0.4043 0.1428
    0.5 5.25 0.4063 0.1378
    0.7 5.58 0.4084 0.1262
     | Show Table
    DownLoad: CSV

    Table 2.  Switching times and final substrate concentrations for objective functional (21), when insoluble substrate $ s_1^0 $ varies ($ \alpha = 0.01 $, $ s_2^0 = 0.5 $)

    $ s_1^{0} $ $ t_s $ $ s_1(t_f) $ $ s_2(t_f) $
    0.1 5.25 0.4063 0.1378
    0.2 5.16 0.4046 0.1406
    0.3 5.10 0.4021 0.1422
    0.4 5.09 0.3933 0.1414
     | Show Table
    DownLoad: CSV

    Table 3.  Switching times, global effort required to control the system and final substrate concentrations for objective functional, when $ \alpha = 0.001, \, 0.01, \, 0.1, \, 1 $ and $ (s_1^0, s_2^0) = (0.1, 0.5) $

    $ \alpha $ $ t_s $ $ I= {\int_0^{t_f}}u(t)dt $ $ s_1(t_f) $ $ s_2(t_f) $
    $ 0.001 $ $ 2.91 $ $ 7.0900 $ $ 0.3943 $ $ 0.0989 $
    $ 0.01 $ $ 5.25 $ $ 4.7500 $ $ 0.4063 $ $ 0.1378 $
    $ 0.1 $ $ 9.26 $ $ 0.7479 $ $ 0.7037 $ $ 0.1222 $
    $ 1 $ $ - $ $ 0 $ $ 0.8420 $ $ 0.0001 $
     | Show Table
    DownLoad: CSV

    Table 4.  First time $ \tilde{t} $ at which the control assumes constantly its maximal value and final substrate concentrations for objective functional (24) and different values of $ s_2^0 $ ($ \alpha = 0.01 $, $ s_1^0 = 0.1) $

    $ s_2^{0} $ $ \tilde{t} $ $ s_1(t_f) $ $ s_2(t_f) $
    0.1 5.72 0.4008 0.1210
    0.3 5.78 0.4012 0.1192
    0.5 5.88 0.4018 0.1157
    0.7 6.16 0.4010 0.1075
     | Show Table
    DownLoad: CSV

    Table 5.  First time $ \tilde{t} $ at which the control assumes constantly its maximal value and final substrate concentrations for objective functional (24) and different values of $ s_1^0 $ ($ \alpha = 0.01 $, $ s_2^0 = 0.5) $

    $ s_1^{0} $ $ \tilde{t} $ $ s_1(t_f) $ $ s_2(t_f) $
    0.1 5.88 0.4018 0.1157
    0.2 5.84 0.4009 0.1171
    0.3 5.86 0.3990 0.1169
    0.4 6.04 0.3902 0.1135
     | Show Table
    DownLoad: CSV

    Table 6.  First time $ \tilde{t} $ at which the control assumes constantly its maximal value, global effort $ I $ required to control the process, final substrate concentrations for objective functional (24), when $ \alpha = 0.001, 0.01, 0.1, 1 $ and $ (s_1^0, s_2^0) = (0.1, 0.5) $

    $ \alpha $ $ \tilde{t} $ $ I= {\int_0^{t_f}}u(t)dt $ $ s_1(t_f) $ $ s_2(t_f) $
    $ 0.001 $ $ 3.00 $ $ 8.1174 $ $ 0.3942 $ $ 0.0961 $
    $ 0.01 $ $ 5.88 $ $ 5.8249 $ $ 0.4018 $ $ 0.1157 $
    $ 0.1 $ $ - $ $ 2.6023 $ $ 0.5600 $ $ 0.1186 $
    $ 1 $ $ - $ $ 0.5777 $ $ 0.7659 $ $ 0.0383 $
     | Show Table
    DownLoad: CSV
  • [1] J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707-723.  doi: 10.1002/bit.260100602.
    [2] S. Anita, V. Capasso and V. Arnautu, An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-8098-5.
    [3] O. BaraS. M. DjouadiJ. D. Day and S. Lenhart, Immune therapeutic strategies using optimal controls with L1 and L2 type objectives, Math. Biosci., 290 (2017), 9-21.  doi: 10.1016/j.mbs.2017.05.010.
    [4] T. BayenO. Cots and P. Gajardo, Analysis of an optimal control problem related to anaerobic digestion process, J. Optimiz. Theory App., 178 (2018), 627-659.  doi: 10.1007/s10957-018-1292-7.
    [5] T. Bayen and P. Gajardo, On the steady state optimization of the biogas production in a two-stage anaerobic digestion model, J. Math. Biol., 78 (2019), 1067-1087.  doi: 10.1007/s00285-018-1301-3.
    [6] T. BayenJ. Harmand and M. Sebbah, Time-optimal control of concentration changes in the chemostat with one single species, Appl. Math. Model., 50 (2017), 257-278.  doi: 10.1016/j.apm.2017.05.037.
    [7] S. BozkurtL. Moreno and I. Neretnieks, Long-term processes in waste deposits, Sci. Total Environ., 250 (2000), 101-121.  doi: 10.1016/S0048-9697(00)00370-3.
    [8] S.-J. Feng, B.-Y. Cao and H.-J. Xie, Modeling of leachate recirculation using spraying-vertical well systems in bioreactor landfills, Int. J. Geomech., 17 (2017), 04017012. doi: 10.1061/(ASCE)GM.1943-5622.0000887.
    [9] H. V. M. Hamelers, A Mathematical Model for Composting Kinetics, Ph.D thesis, Wageningen University, 2001.
    [10] J. Harmsen, Identification of organic compounds in leachate from a waste tip, Water Res., 17 (1983), 699-705.  doi: 10.1016/0043-1354(83)90239-7.
    [11] R. T. Haug, The Practical Handbook of Compost Engineering, Lewis Publishers, Boca Raton, FL, 1993. doi: 10.1201/9780203736234.
    [12] M. M. Haydar and M. V Khire, Leachate recirculation using permeable blankets in engineered landfills, J. Geotech. GeoEnviron., 133 (2007), 360-371.  doi: 10.1061/(ASCE)1090-0241(2007)133:4(360).
    [13] A. Husain, Mathematical models of the kinetics of anaerobic digestion - a selected review, Biomass Bioenergy, 14 (1998), 561-571.  doi: 10.1016/S0961-9534(97)10047-2.
    [14] U. LedzewiczT. Brown and H. Schättler, Comparison of optimal controls for a model in cancer chemotherapy with $L_1$- and $L_2$-type objectives, Optim. Method. Softw., 19 (2004), 339-350.  doi: 10.1080/10556780410001683104.
    [15] P. J. MarisD. W. Harrington and F. E. Mosey, Treatment of landfill leachate; management options, Water Qual. Res. J. Can., 20 (1985), 25-42.  doi: 10.2166/wqrj.1985.026.
    [16] G. MartalòC. BianchiB. BuonomoM. Chiappini and V. Vespri, Mathematical modeling of oxygen control in biocell composting plants, Math. Comput. Simulat., 177 (2020), 105-119.  doi: 10.1016/j.matcom.2020.04.011.
    [17] G. Martalò, C. Bianchi, B. Buonomo, M. Chiappini and V. Vespri, On the role of inhibition processes in modeling control strategies for composting plants, in Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer Series, Volume 21 (editors M. Aguiar, C. Braumann, B. Kooi, A. Pugliese, N. Stollenwerk and E. Venturino), Springer, Cham, (2020), 125–145.
    [18] J. Monod, The growth of bacterial cultures, Annu. Rev. Microbiol., 3 (1949), 371-394.  doi: 10.1146/annurev.mi.03.100149.002103.
    [19] J. Nygren, Output Feedback Control: Some Methods and Applications, Doctoral dissertation, Uppsala Universitet, 2014.
    [20] J. Pacey, D. Augenstein, R. Morck, D. Reinhart and R. Yazdani, The bioreactor landfill - An innovation in solid waste management, MSW Management (1999). Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2984&rep=rep1&type=pdf
    [21] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.
    [22] C. Polprasert, Organic Waste Recycling, John Wiley and Sons Ltd., 1989.
    [23] L. S. PontryaginMathematical Theory of Optimal Processes, CRC Press, 1987. 
    [24] X. Qian, R. M. Koerner and D. H. Gray, Geotechnical Aspects of Landfill Design and Construction, Pearson College Div., 2001.
    [25] A. RapaportT. BayenM. SebbahA. Donoso-Bravo and A. Torrico, Dynamical modeling and optimal control of landfills, Math. Models Methods Appl. Sci., 26 (2016), 901-929.  doi: 10.1142/S0218202516500214.
    [26] S. Revollar, P. Vega, R. Vilanova and M. Francisco, Optimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategies, App. Sci., 7 (2017), 813. doi: 10.3390/app7080813.
    [27] H. Schaettler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer Science & Business Media, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.
    [28] D. T. Sponza and O. N. Agdag, Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors, Process Biochem., 39 (2004), 2157-2165.  doi: 10.1016/j.procbio.2003.11.012.
    [29] R. F. StengelR. GhigliazzaN. Kulkarni and O. Laplace, Optimal control of innate immune response, Optim. Control Appl. Meth., 23 (2002), 91-104.  doi: 10.1002/oca.704.
    [30] V. A. VavilinS. V. RytovL. Y. LokshinaS. G. Pavlostathis and M. A. Barlaz, Distributed model of solid waste anaerobic digestion: effects of leachate recirculation and pH adjustment, Biotechnol. Bioeng., 81 (2003), 66-73.  doi: 10.1002/bit.10450.
  • 加载中

Figures(14)

Tables(6)

SHARE

Article Metrics

HTML views(672) PDF downloads(361) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return