-
Previous Article
Guaranteed cost control of discrete-time switched saturated systems
- DCDS-B Home
- This Issue
-
Next Article
On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type
Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations
College of Sciences, Hohai University, No.1 Xikang Road, Nanjing, Jiangsu, 210098, China |
In the study of the continuity of the Lyapunov exponent for the discrete quasi-periodic Schrödinger operators, there is a pioneering result by Wang-You [
References:
[1] |
A. Avila, S. Jitomirskaya and C. A. Marx,
Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 283-339.
doi: 10.1007/s00222-017-0729-1. |
[2] |
J. Bochi,
Genericity of zero Lyapunov exponents, Ergod. Theory Dyn. Syst., 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[3] |
J. Bochi and M. Viana,
The Lyapunov exponents of generic volume perserving and symplectic maps, Ann. of Math., 161 (2005), 1423-1485.
doi: 10.4007/annals.2005.161.1423. |
[4] |
J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications,
Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.
doi: 10.1515/9781400837144. |
[5] |
J. Bourgain,
Positivity and continuity of the Lyapunov exponent for shifts on $\mathbb{T}^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.
doi: 10.1007/BF02787834. |
[6] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math., 152 (2000), 835-879.
doi: 10.2307/2661356. |
[7] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1028-1218.
doi: 10.1023/A:1019751801035. |
[8] |
A. Furman,
On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 797-815.
doi: 10.1016/S0246-0203(97)80113-6. |
[9] |
L. Ge and Y. Wang,, work in progress. Google Scholar |
[10] |
M. Geng and K. Tao, Large deviation theorems for Dirichlet determinants of analytic quasi-periodic Jacobi operators with Brjuno-Rüssmann frequency, preprint, arXiv: 1906.11136. Google Scholar |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., 154 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
M. Goldstein and W. Schlag,
Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Analysis, 18 (2008), 755-869.
doi: 10.1007/s00039-008-0670-y. |
[13] |
R. Han and S. Zhang, Optimal large deviation estimates and Hölder Regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles, preprint, arXiv: 1803.02035v1. Google Scholar |
[14] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theory Dyn. Syst., 29 (2009), 1881-1905.
doi: 10.1017/S0143385709000704. |
[15] |
S. Jitomirskaya and C. A. Marx,
Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, Journal of Fixed Point Theory and Applications, 10 (2011), 129-146.
doi: 10.1007/s11784-011-0055-y. |
[16] |
S. Klein,
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.
doi: 10.1016/j.jfa.2004.04.009. |
[17] |
J. Liang, Y. Wang and J. You, Hölder continuity of Lyapunov exponent for a family of smooth Schrödinger cocycles, preprint, arXiv: 1806.03284. Google Scholar |
[18] |
S. Łojasiewicz,
Sur le problème de la division, Studia Math., 18 (1959), 87-136.
doi: 10.4064/sm-18-1-87-136. |
[19] |
K. Tao,
Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus, Front. Math. China, 7 (2012), 521-542.
doi: 10.1007/s11464-012-0201-x. |
[20] |
K. Tao, Strong Birkhoff Ergodic Theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, preprint, arXiv: 1805.00431. Google Scholar |
[21] |
Y. Wang and J. You,
Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles, Duke Math., 162 (2013), 2363-2412.
doi: 10.1215/00127094-2371528. |
[22] |
Y. Wang and J. You,
The set of smooth quasi-periodic Schrödinger cocycles with positive Lyapunov exponent is not open, Commun. Math. Phys., 362 (2018), 801-826.
doi: 10.1007/s00220-018-3223-8. |
[23] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[24] |
J. Xu, L. Ge and Y. Wang, work in progess. Google Scholar |
[25] |
L.-S. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergod. Theory Dyn. Syst., 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[26] |
J. You and S. Zhang,
Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theory Dyn. Syst., 34 (2014), 1395-1408.
doi: 10.1017/etds.2013.4. |
show all references
References:
[1] |
A. Avila, S. Jitomirskaya and C. A. Marx,
Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 283-339.
doi: 10.1007/s00222-017-0729-1. |
[2] |
J. Bochi,
Genericity of zero Lyapunov exponents, Ergod. Theory Dyn. Syst., 22 (2002), 1667-1696.
doi: 10.1017/S0143385702001165. |
[3] |
J. Bochi and M. Viana,
The Lyapunov exponents of generic volume perserving and symplectic maps, Ann. of Math., 161 (2005), 1423-1485.
doi: 10.4007/annals.2005.161.1423. |
[4] |
J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications,
Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.
doi: 10.1515/9781400837144. |
[5] |
J. Bourgain,
Positivity and continuity of the Lyapunov exponent for shifts on $\mathbb{T}^d$ with arbitrary frequency vector and real analytic potential, J. Anal. Math., 96 (2005), 313-355.
doi: 10.1007/BF02787834. |
[6] |
J. Bourgain and M. Goldstein,
On nonperturbative localization with quasi-periodic potential, Ann. of Math., 152 (2000), 835-879.
doi: 10.2307/2661356. |
[7] |
J. Bourgain and S. Jitomirskaya,
Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Stat. Phys., 108 (2002), 1028-1218.
doi: 10.1023/A:1019751801035. |
[8] |
A. Furman,
On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 797-815.
doi: 10.1016/S0246-0203(97)80113-6. |
[9] |
L. Ge and Y. Wang,, work in progress. Google Scholar |
[10] |
M. Geng and K. Tao, Large deviation theorems for Dirichlet determinants of analytic quasi-periodic Jacobi operators with Brjuno-Rüssmann frequency, preprint, arXiv: 1906.11136. Google Scholar |
[11] |
M. Goldstein and W. Schlag,
Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., 154 (2001), 155-203.
doi: 10.2307/3062114. |
[12] |
M. Goldstein and W. Schlag,
Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Analysis, 18 (2008), 755-869.
doi: 10.1007/s00039-008-0670-y. |
[13] |
R. Han and S. Zhang, Optimal large deviation estimates and Hölder Regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles, preprint, arXiv: 1803.02035v1. Google Scholar |
[14] |
S. Jitomirskaya, D. A. Koslover and M. S. Schulteis,
Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergod. Theory Dyn. Syst., 29 (2009), 1881-1905.
doi: 10.1017/S0143385709000704. |
[15] |
S. Jitomirskaya and C. A. Marx,
Continuity of the Lyapunov Exponent for analytic quasi-perodic cocycles with singularities, Journal of Fixed Point Theory and Applications, 10 (2011), 129-146.
doi: 10.1007/s11784-011-0055-y. |
[16] |
S. Klein,
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal., 218 (2005), 255-292.
doi: 10.1016/j.jfa.2004.04.009. |
[17] |
J. Liang, Y. Wang and J. You, Hölder continuity of Lyapunov exponent for a family of smooth Schrödinger cocycles, preprint, arXiv: 1806.03284. Google Scholar |
[18] |
S. Łojasiewicz,
Sur le problème de la division, Studia Math., 18 (1959), 87-136.
doi: 10.4064/sm-18-1-87-136. |
[19] |
K. Tao,
Continuity of Lyapunov exponent for analytic quasi-periodic cocycles on higher-dimensional torus, Front. Math. China, 7 (2012), 521-542.
doi: 10.1007/s11464-012-0201-x. |
[20] |
K. Tao, Strong Birkhoff Ergodic Theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles, preprint, arXiv: 1805.00431. Google Scholar |
[21] |
Y. Wang and J. You,
Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles, Duke Math., 162 (2013), 2363-2412.
doi: 10.1215/00127094-2371528. |
[22] |
Y. Wang and J. You,
The set of smooth quasi-periodic Schrödinger cocycles with positive Lyapunov exponent is not open, Commun. Math. Phys., 362 (2018), 801-826.
doi: 10.1007/s00220-018-3223-8. |
[23] |
Y. Wang and Z. Zhang,
Uniform positivity and continuity of Lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.
doi: 10.1016/j.jfa.2015.01.003. |
[24] |
J. Xu, L. Ge and Y. Wang, work in progess. Google Scholar |
[25] |
L.-S. Young,
Lyapunov exponents for some quasi-periodic cocycles, Ergod. Theory Dyn. Syst., 17 (1997), 483-504.
doi: 10.1017/S0143385797079170. |
[26] |
J. You and S. Zhang,
Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Theory Dyn. Syst., 34 (2014), 1395-1408.
doi: 10.1017/etds.2013.4. |
[1] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[4] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[5] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[6] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[7] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[8] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[9] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[10] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[11] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[12] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[13] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[14] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[15] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[16] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[17] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[18] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[19] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[20] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]