• Previous Article
    The impact of toxins on competition dynamics of three species in a polluted aquatic environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate
June  2021, 26(6): 3023-3041. doi: 10.3934/dcdsb.2020218

The Keller-Segel system with logistic growth and signal-dependent motility

1. 

Department of Mathematics, South China University of Technology, Guangzhou, 510640, China

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong

*Corresponding author: Zhi-An Wang

Received  February 2020 Revised  May 2020 Published  July 2020

Fund Project: The research of H.Y. Jin was supported by the NSF of China (No. 11871226), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010140), Guangzhou Science and Technology Program No.202002030363 and the Fundamental Research Funds for the Central Universities. The research of Z.A. Wang was supported by the Hong Kong RGC GRF grant 15303019 (Project ID P0030816)

The paper is concerned with the following chemotaxis system with nonlinear motility functions
$\begin{equation}\label{0-1}\begin{cases}u_t = \nabla \cdot (\gamma(v)\nabla u- u\chi(v)\nabla v)+\mu u(1-u), &x\in \Omega, ~~t>0, \\ 0 = \Delta v+ u-v, & x\in \Omega, ~~t>0, \\u(x, 0) = u_0(x), & x\in \Omega, \end{cases}~~~~(\ast)\end{equation}$
subject to homogeneous Neumann boundary conditions in a bounded domain
$ \Omega\subset \mathbb{R}^2 $
with smooth boundary, where the motility functions
$ \gamma(v) $
and
$ \chi(v) $
satisfy the following conditions
$ (\gamma, \chi)\in [C^2[0, \infty)]^2 $
with
$ \gamma(v)>0 $
and
$ \frac{|\chi(v)|^2}{\gamma(v)} $
is bounded for all
$ v\geq 0 $
.
By employing the method of energy estimates, we establish the existence of globally bounded solutions of ($\ast$) with
$ \mu>0 $
for any
$ u_0 \in W^{1, \infty}(\Omega) $
with
$ u_0 \geq (\not\equiv) 0 $
. Then based on a Lyapunov function, we show that all solutions
$ (u, v) $
of ($\ast$) will exponentially converge to the unique constant steady state
$ (1, 1) $
provided
$ \mu>\frac{K_0}{16} $
with
$ K_0 = \max\limits_{0\leq v \leq \infty}\frac{|\chi(v)|^2}{\gamma(v)} $
.
Citation: Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218
References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92.  doi: 10.1002/cpa.3160170104.  Google Scholar

[3]

J. Ahn and C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32 (2019), 1327-1351.  doi: 10.1088/1361-6544/aaf513.  Google Scholar

[4]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[5]

X. Fu, L.-H. Tang, C. Liu, J.-D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial system with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. doi: 10.1103/PhysRevLett.108.198102.  Google Scholar

[6]

K. Fujie and J. Jiang, Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, arXiv: 2001.01288. Google Scholar

[7]

K. Fujie and J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differential Equations, 269 (2020), 5338-5378.  doi: 10.1016/j.jde.2020.04.001.  Google Scholar

[8]

K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.  doi: 10.1088/0951-7715/29/8/2417.  Google Scholar

[9]

H.-Y. JinY.-J. Kim and Z.-A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632-1657.  doi: 10.1137/17M1144647.  Google Scholar

[10]

H.-Y. Jin and Z.-A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., DOI: https://doi.org/10.1090/proc/15124, 2020. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[13]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[14]

K. Lin and C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025-5046.  doi: 10.3934/dcds.2016018.  Google Scholar

[15]

C. Liu, Sequtential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238-241.  doi: 10.1126/science.1209042.  Google Scholar

[16]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[17]

M. Ma, R. Peng and Z. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402 (2020), 132259. doi: 10.1016/j.physd.2019.132259.  Google Scholar

[18]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[19]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[20]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. TMA, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[22]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[23]

P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[24]

J. Smith-RobergeD. Iron and T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, European J. Appl. Math., 30 (2019), 196-218.  doi: 10.1017/S0956792518000013.  Google Scholar

[25]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[26]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[27]

Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.  Google Scholar

[28]

Y. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Meth. Appl. Sci., 27 (2017), 1645-1683.  doi: 10.1142/S0218202517500282.  Google Scholar

[29]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[30]

J. Wang and M. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019), 011507. doi: 10.1063/1.5061738.  Google Scholar

[31]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[32]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.  Google Scholar

[33]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[34]

P. XiaY. HanJ. Tao and M. Ma, Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility, Mathematics in Applied Sciences and Engineering, 1 (2020), 1-15.   Google Scholar

[35]

T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differential Equations, 258 (2015), 4275-4323.  doi: 10.1016/j.jde.2015.01.032.  Google Scholar

[36]

C. Yoon and Y.-J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Application Mathematics, 149 (2017), 101-123.  doi: 10.1007/s10440-016-0089-7.  Google Scholar

show all references

References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92.  doi: 10.1002/cpa.3160170104.  Google Scholar

[3]

J. Ahn and C. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32 (2019), 1327-1351.  doi: 10.1088/1361-6544/aaf513.  Google Scholar

[4]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[5]

X. Fu, L.-H. Tang, C. Liu, J.-D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial system with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. doi: 10.1103/PhysRevLett.108.198102.  Google Scholar

[6]

K. Fujie and J. Jiang, Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, arXiv: 2001.01288. Google Scholar

[7]

K. Fujie and J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differential Equations, 269 (2020), 5338-5378.  doi: 10.1016/j.jde.2020.04.001.  Google Scholar

[8]

K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.  doi: 10.1088/0951-7715/29/8/2417.  Google Scholar

[9]

H.-Y. JinY.-J. Kim and Z.-A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632-1657.  doi: 10.1137/17M1144647.  Google Scholar

[10]

H.-Y. Jin and Z.-A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., DOI: https://doi.org/10.1090/proc/15124, 2020. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[13]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[14]

K. Lin and C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025-5046.  doi: 10.3934/dcds.2016018.  Google Scholar

[15]

C. Liu, Sequtential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238-241.  doi: 10.1126/science.1209042.  Google Scholar

[16]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[17]

M. Ma, R. Peng and Z. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402 (2020), 132259. doi: 10.1016/j.physd.2019.132259.  Google Scholar

[18]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[19]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[20]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. TMA, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[22]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[23]

P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[24]

J. Smith-RobergeD. Iron and T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, European J. Appl. Math., 30 (2019), 196-218.  doi: 10.1017/S0956792518000013.  Google Scholar

[25]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[26]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.  Google Scholar

[27]

Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229-4250.  doi: 10.1137/15M1014115.  Google Scholar

[28]

Y. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Meth. Appl. Sci., 27 (2017), 1645-1683.  doi: 10.1142/S0218202517500282.  Google Scholar

[29]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[30]

J. Wang and M. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019), 011507. doi: 10.1063/1.5061738.  Google Scholar

[31]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[32]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.  Google Scholar

[33]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[34]

P. XiaY. HanJ. Tao and M. Ma, Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility, Mathematics in Applied Sciences and Engineering, 1 (2020), 1-15.   Google Scholar

[35]

T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differential Equations, 258 (2015), 4275-4323.  doi: 10.1016/j.jde.2015.01.032.  Google Scholar

[36]

C. Yoon and Y.-J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Application Mathematics, 149 (2017), 101-123.  doi: 10.1007/s10440-016-0089-7.  Google Scholar

[1]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[2]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[3]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[4]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[5]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[6]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[7]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[8]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[9]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[10]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[11]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[12]

Mario Pulvirenti, Sergio Simonella. On the cardinality of collisional clusters for hard spheres at low density. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3903-3914. doi: 10.3934/dcds.2021021

[13]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[14]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[15]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[16]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[17]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[18]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[19]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (133)
  • HTML views (293)
  • Cited by (1)

Other articles
by authors

[Back to Top]