doi: 10.3934/dcdsb.2020219

The impact of toxins on competition dynamics of three species in a polluted aquatic environment

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China

2. 

School of Mathematical and Statistical Sciences, Southwest University, Chongqing 400715, China

3. 

School of Mathematical and Statistical Sciences, Hubei University of Science and Technology, Xianning 437100, China

*Corresponding author: Qihua Huang

Received  February 2020 Revised  May 2020 Published  July 2020

Fund Project: The second author is supported by the NSF of China (11871235). The third author is supported by the NSF of China (11871060), the Venture and Innovation Support Program for Chongqing Overseas Returnees (7820100158), the Fundamental Research Funds for the Central Universities (XDJK2018B031), and the faculty startup fund from Southwest University (20710948)

Accurately assessing the risks of toxins in polluted ecosystems and finding factors that determine population persistence and extirpation are important from both environmental and conservation perspectives. In this paper, we develop and study a toxin-mediated competition model for three species that live in the same polluted aquatic environment and compete for the same resources. Analytical analysis of positive invariance, existence and stability of equilibria, sensitivity of equilibria to toxin are presented. Bifurcation analysis is used to understand how the environmental toxins, plus distinct vulnerabilities of three species to toxins, affect the competition outcomes. Our results reveal that while high concentrations lead to extirpation of all species, sublethal levels of toxins affect competition outcomes in many counterintuitive ways, which include boosting coexistence of species by reducing the abundance of the predominant species, inducing many different types of bistability and even tristability, generating and reducing population oscillations, and exchanging roles of winner and loser in competition. The findings in this work provide a sound theoretical foundation for understanding and assessing population or community effects of toxicity.

Citation: Yuyue Zhang, Jicai Huang, Qihua Huang. The impact of toxins on competition dynamics of three species in a polluted aquatic environment. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020219
References:
[1]

S. M. BartellR. A. PastorokH. R. AkcakayaH. ReganS. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.  doi: 10.1080/713610016.  Google Scholar

[2]

J. A. Camargo and Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.  doi: 10.1016/j.envint.2006.05.002.  Google Scholar

[3]

W. H. Clements and C. Kotalik, Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.  doi: 10.1086/685085.  Google Scholar

[4]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

J. W. FleegerK. R. Carman and R. M. Nisbet, Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.  doi: 10.1016/S0048-9697(03)00141-4.  Google Scholar

[7]

H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.  doi: 10.1007/BF00168004.  Google Scholar

[8]

M. Gyllenberg and P. Yan, On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.  doi: 10.3934/dcdsb.2009.11.347.  Google Scholar

[9]

T. G. HallamC. E. Clark and G. S. Jordan, Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.  doi: 10.1007/BF00275908.  Google Scholar

[10]

T. G. HallamC. E. Clark and R. R. Lassiter, Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[11]

T. G. Hallam and J. T. de Luna, Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[12]

T. Hanazato, Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.  doi: 10.1016/S0269-7491(00)00110-X.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[14]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[15]

Q. HuangL. ParshotamH. WangC. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.  doi: 10.1016/j.jtbi.2013.05.018.  Google Scholar

[16]

Q. HuangH. Wang and M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.  doi: 10.1016/j.jtbi.2015.04.019.  Google Scholar

[17]

J. Jiang and L. Niu, On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.  doi: 10.1016/j.jde.2017.08.022.  Google Scholar

[18]

G. LanC. Wei and S. Zhang, Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.  doi: 10.1016/j.physa.2019.01.096.  Google Scholar

[19]

Z. Lu and Y. Luo, Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.  doi: 10.1016/S0898-1221(02)00129-3.  Google Scholar

[20]

Z. MaG. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.  doi: 10.1016/0025-5564(90)90103-6.  Google Scholar

[21]

A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74. doi: 10.1002/ieam.132.  Google Scholar

[22]

K. Murakami, A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.  doi: 10.1016/j.jmaa.2017.07.076.  Google Scholar

[23]

K. Murakami, A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.  doi: 10.1016/j.mbs.2018.12.006.  Google Scholar

[24]

R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321.  Google Scholar

[25]

C. Shan and Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.  doi: 10.1007/s00285-018-1290-2.  Google Scholar

[26]

A. J. Smith and C. P. Tran, A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.  doi: 10.1899/09-076.1.  Google Scholar

[27]

D. M. ThomasT. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.  doi: 10.1016/0025-5564(95)00091-7.  Google Scholar

[28]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[29]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[30]

S. YangF. XuF. WuS. Wang and B. Zheng, Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.  doi: 10.1016/j.scitotenv.2013.09.094.  Google Scholar

[31]

P. YuM. Han and D. Xiao, Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.  doi: 10.1016/j.jmaa.2015.12.002.  Google Scholar

[32]

T. F. Zabel and S. Cole, The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.  doi: 10.1111/j.1747-6593.1999.tb01082.x.  Google Scholar

[33]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364  Google Scholar

[34]

E. C. Zeeman and M. L. Zeeman, An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[35]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

[36]

T. ZhangH. Jin and H. Zhu, Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.  doi: 10.1016/0045-6535(96)00110-5.  Google Scholar

show all references

References:
[1]

S. M. BartellR. A. PastorokH. R. AkcakayaH. ReganS. Ferson and C. Mackay, Realism and relevance of ecological models used in chemical risk assessment, Hum. Ecol. Risk Assess., 9 (2003), 907-938.  doi: 10.1080/713610016.  Google Scholar

[2]

J. A. Camargo and Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32 (2006), 831-849.  doi: 10.1016/j.envint.2006.05.002.  Google Scholar

[3]

W. H. Clements and C. Kotalik, Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity, Freshw. Sci., 35 (2016), 126-138.  doi: 10.1086/685085.  Google Scholar

[4]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ., 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

J. W. FleegerK. R. Carman and R. M. Nisbet, Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003), 207-233.  doi: 10.1016/S0048-9697(03)00141-4.  Google Scholar

[7]

H. I. Freedman and J. B. Shukla, Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30 (1991), 15-30.  doi: 10.1007/BF00168004.  Google Scholar

[8]

M. Gyllenberg and P. Yan, On the number of limit cycles for three dimensional Lotka-Volterra systems, Discrete Contin. Dynam. Syst. Ser. B, 11 (2009), 347-352.  doi: 10.3934/dcdsb.2009.11.347.  Google Scholar

[9]

T. G. HallamC. E. Clark and G. S. Jordan, Effects of toxicants on populations: A qualitative approach Ⅱ. First order kinetics, J. Math. Biol., 18 (1983), 25-37.  doi: 10.1007/BF00275908.  Google Scholar

[10]

T. G. HallamC. E. Clark and R. R. Lassiter, Effects of toxicants on populations: A qualitative approach Ⅰ. Equilibrium environmental exposure, Ecol. Model., 18 (1983), 291-304.  doi: 10.1016/0304-3800(83)90019-4.  Google Scholar

[11]

T. G. Hallam and J. T. de Luna, Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411-429.  doi: 10.1016/S0022-5193(84)80090-9.  Google Scholar

[12]

T. Hanazato, Pesticide effects on freshwater zooplankton: An ecological perspective, Environ. Pollut., 112 (2001), 1-10.  doi: 10.1016/S0269-7491(00)00110-X.  Google Scholar

[13]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species, Nonlinearity, 1 (1988), 51-71.  doi: 10.1088/0951-7715/1/1/003.  Google Scholar

[14]

J. Hofbauer and J. W.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl. Math. Lett., 7 (1994), 65-70.  doi: 10.1016/0893-9659(94)90095-7.  Google Scholar

[15]

Q. HuangL. ParshotamH. WangC. Bampfylde and M. A. Lewis, A model for the impact of contaminants on fish population dynamics, J. Theor. Biol., 334 (2013), 71-79.  doi: 10.1016/j.jtbi.2013.05.018.  Google Scholar

[16]

Q. HuangH. Wang and M. A. Lewis, The impact of environmental toxins on predator-prey dynamics, J. Theor. Biol., 378 (2015), 12-30.  doi: 10.1016/j.jtbi.2015.04.019.  Google Scholar

[17]

J. Jiang and L. Niu, On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines, J. Diff. Equ., 263 (2017), 7753-7781.  doi: 10.1016/j.jde.2017.08.022.  Google Scholar

[18]

G. LanC. Wei and S. Zhang, Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A: Statistical Mechanics and its Applications, 521 (2019), 828-842.  doi: 10.1016/j.physa.2019.01.096.  Google Scholar

[19]

Z. Lu and Y. Luo, Two limit cycles in three-dimensional Lotka-Volterra systems, Comput. Math. Appl., 44 (2002), 51-66.  doi: 10.1016/S0898-1221(02)00129-3.  Google Scholar

[20]

Z. MaG. Cui and W. Wang, Persistence and extinction of a population in a polluted environment, Math. Bios., 101 (1990), 75-97.  doi: 10.1016/0025-5564(90)90103-6.  Google Scholar

[21]

A. E. McElroy, M. G. Barron, N. Beckvar, S. B. K. Driscoll, J. P. Meador, T. F. Parkerton, T. G. Preuss and J. A. Steevens, A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms, Integ. Environ. Assess. Manage., 7 (2011) 50–74. doi: 10.1002/ieam.132.  Google Scholar

[22]

K. Murakami, A concrete example with multiple limit cycles for three dimensional Lotka-Volterra systems, J. Math. Anal. Appl., 457 (2018), 1-9.  doi: 10.1016/j.jmaa.2017.07.076.  Google Scholar

[23]

K. Murakami, A concrete example with three limit cycles in Zeeman's class 29 for three dimensional Lotka-Volterra competitive systems, Math. Bios., 308 (2019), 38-41.  doi: 10.1016/j.mbs.2018.12.006.  Google Scholar

[24]

R. A. Pastorok, S. M. Bartell, S. Ferson and L. R. Ginzburg, Ecological modeling in risk assessment: chemical effects on populations, ecosystems, and landscapes, CRC, Boca Raton, FL, USA, 2001. doi: 10.1201/9781420032321.  Google Scholar

[25]

C. Shan and Q. Huang, Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment, J. Math. Biol., 78 (2019), 739-766.  doi: 10.1007/s00285-018-1290-2.  Google Scholar

[26]

A. J. Smith and C. P. Tran, A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29 (2010), 875-891.  doi: 10.1899/09-076.1.  Google Scholar

[27]

D. M. ThomasT. W. Snell and S. M. Jaffar, A control problem in a polluted environment, Math. Bios., 133 (1996), 139-163.  doi: 10.1016/0025-5564(95)00091-7.  Google Scholar

[28]

P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227-234.  doi: 10.1137/S0036139995294767.  Google Scholar

[29]

D. Xiao and W. Li, Limit cycles for the competitive three dimensional Lotka-Volterra system, J. Diff. Equ., 164 (2000), 1-15.  doi: 10.1006/jdeq.1999.3729.  Google Scholar

[30]

S. YangF. XuF. WuS. Wang and B. Zheng, Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471 (2014), 677-683.  doi: 10.1016/j.scitotenv.2013.09.094.  Google Scholar

[31]

P. YuM. Han and D. Xiao, Four small limit cycles arond a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 436 (2016), 521-555.  doi: 10.1016/j.jmaa.2015.12.002.  Google Scholar

[32]

T. F. Zabel and S. Cole, The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13 (1999), 436-440.  doi: 10.1111/j.1747-6593.1999.tb01082.x.  Google Scholar

[33]

E. C. Zeeman and M. L. Zeeman, On the convexity of carrying simplices in competitive Lotka-Volterra systems., In Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math., 152, Dekker, New York, (1994), 353–364  Google Scholar

[34]

E. C. Zeeman and M. L. Zeeman, An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex, Nonlinearity, 15 (2002), 2019-2032.  doi: 10.1088/0951-7715/15/6/312.  Google Scholar

[35]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stab. Sys., 8 (1993), 189-217.  doi: 10.1080/02681119308806158.  Google Scholar

[36]

T. ZhangH. Jin and H. Zhu, Quality criteria of acrylonitrile for the protection of aquatic life in China, Chemosphere, 32 (1996), 2083-2093.  doi: 10.1016/0045-6535(96)00110-5.  Google Scholar

Figure 1.  The illustration of Theorem 3.7
Figure 2.  Bifurcation diagrams with respect to toxin level $ T $ for the case where species-2 only equilibrium $ E_2 $ is globally asymptotically stable when $ T = 0 $. Parameters: $ b_1 = 1, \ b_2 = 1.06, \ b_3 = 1.13, \ p_1 = p_2 = p_3 = k_1 = k_2 = k_3 = 1, \ m_1 = 0.44, \ m_2 = 0.5, \ m_3 = 0.56, \ c_{12} = 1.13, \ c_{13} = 1.19, \ c_{21} = 1.06, \ c_{23} = 0.88, \ c_{31} = 0.75, \ c_{32} = 1.24 $. Here $ T_1^* = 0.28 $, $ T_2^*\approx0.27 $, $ T_3^*\approx0.27 $
Figure 3.  (a) The Hopf bifurcation diagram corresponding to Fig. 2; (b) Limit cycle for $ T = 0.18069 $ in (a); (c) The time series diagram corresponding to (b); (d) The time series diagram of heteroclinic loop for $ T = 0.1801 $; (e) The phase portrait corresponding to (d). The other parameters are the same as those in Fig. 2
Figure 4.  Bifurcation diagrams with respect to toxin level $ T $ for the case where both species 2-only equilibrium $ E_2 $ and species 3-only equilibrium $ E_3 $ are locally asymptotically stable when $ T = 0 $. Parameters: $ c_{13} = 1.15, \ c_{23} = 1.19, \ c_{32} = 1.13 $, the other parameters and the values of $ T_i^*\ (i = 1, \ 2, \ 3) $ are the same as those in Fig. 2
Figure 5.  Bifurcation diagrams with respect to toxin level $ T $ for the case where the coexistence equilibrium $ E^* $ is globally asymptotically stable when $ T = 0 $. Part of panel (a) is enlarged by panel (b) and part of panel (c) is enlarged by panel (d). Parameters: $ b_1 = 1, \ b_2 = 0.97, \ b_3 = 0.96, \ p_1 = p_2 = p_3 = k_1 = k_2 = k_3 = 1, \ m_1 = 0.52, \ m_2 = 0.47, \ m_3 = 0.53, \ c_{12} = 0.11, \ c_{13} = 0.16, \ c_{21} = 0.16, \ c_{23} = 0.21, \ c_{31} = 0.15, \ c_{32} = 0.22 $. Here $ T_1^* = 0.24 $, $ T_2^*\approx0.25 $, $ T_3^*\approx0.22 $
Figure 6.  Bifurcation diagrams with respect to toxin level $ T $, where the parameters are the same to those in Fig. 2 except that $ p_2 = 0.5, \ p_3 = 0.2 $. Here, $ T_1^* = 0.28 $, $ T_2^*\approx 0.54 $, $ T_3^*\approx 1.34 $
Figure 7.  Bifurcation diagrams with respect to toxin level $ T $, where the parameters are similar to those in Fig. 2 except that $ p_2 = 2, \ p_3 = 2.5 $. Here $ T_1^* = 0.28 $, $ T_2^*\approx0.14 $, $ T_3^*\approx 0.11 $
Table 1.  The asymptotic dynamics on $ \Sigma $ of system (8). $ \bullet $ signifies an attractive equilibrium on $ \Sigma $, $ \circ $ signifies a repellent equilibrium on $ \Sigma $, the intersection of its hyperbolic manifolds signifies a saddle on $ \Sigma $
[1]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[2]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[4]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[5]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[6]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[7]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[8]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[9]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[10]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[14]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[15]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[16]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[17]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[18]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (70)
  • HTML views (238)
  • Cited by (0)

Other articles
by authors

[Back to Top]