
-
Previous Article
Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances
- DCDS-B Home
- This Issue
-
Next Article
The impact of toxins on competition dynamics of three species in a polluted aquatic environment
An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China |
In this paper, we propose an almost periodic multi-patch SIR-SEI model with age structure and time-delayed input of vector. The existence of the almost periodic disease-free solution and the definition of the basic reproduction ratio $ R_{0} $ are given. It is shown that the disease is uniformly persistent if $ R_0>1 $, and it dies out if $ R_0<1 $ under the assumptions that there exists a small invasion and the same travel rate of susceptible, infective and recovered host population in different patches. Finally, we illustrate the above results by numerical simulations. In addition, a simple example shows that the basic reproduction ratio may be underestimated or overestimated if an almost periodic coefficient is approximated by a periodic one.
References:
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani,
Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x. |
[2] |
J. Arino and P. van den Driessche,
A multicity epidemic model, Math. Popul. Stud., 10 (2003), 175-193.
doi: 10.1080/08898480306720. |
[3] |
G. Aronsson and R. B. Kellogg,
On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122.
doi: 10.1016/0025-5564(78)90021-4. |
[4] |
C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company New York, N.Y., 1989. |
[5] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz,
On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[6] |
D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell,
A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.
doi: 10.1126/science.287.5453.667. |
[7] |
L. Esteva and C. Vargas,
Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151.
doi: 10.1016/S0025-5564(98)10003-2. |
[8] |
L. Esteva and C. Vargas,
A model for dengue disease with variable human population, J. Math. Biol., 38 (1999), 220-240.
doi: 10.1007/s002850050147. |
[9] |
A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974. |
[10] |
S. Gakkhar and N. C. Chavda,
Impact of awareness on the spread of Dengue infection in human population, Appl. Math., 4 (2013), 142-147.
doi: 10.4236/am.2013.48A020. |
[11] |
D. Gubler,
Dengue and Dengue hemorrhagic fever., Clinical Microbiology Reviews, 3 (1998), 480-496.
|
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988. |
[13] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[14] |
Y. Hino, S. Murakami and T. Naiko, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[15] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115 (1927), 700-721.
|
[16] |
S. Lee and C. Castillo-Chavez,
The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theoret. Biol., 374 (2015), 152-164.
doi: 10.1016/j.jtbi.2015.03.005. |
[17] |
X. Liu and X.-Q. Zhao,
A periodic epidemic model with age structure in a patchy environment, SIAM J. Appl. Math., 71 (2011), 1896-1917.
doi: 10.1137/100813610. |
[18] |
Y. Lou and X.-Q. Zhao,
Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.
doi: 10.3934/dcdsb.2009.12.169. |
[19] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[20] |
G. R. Phaijoo and D. B. Gurung,
Mathematical study of dengue disease transmission in multi-patch environment, Appl. Math., 7 (2016), 1521-1533.
doi: 10.4236/am.2016.714132. |
[21] |
G. R. Phaijoo and D. B. Gurung,
Mathematical study of dengue disease with and without awareness in host population, Int. J. Adv. Eng. Res. Appl., 1 (2015), 239-245.
|
[22] |
P. Pongsumpun,
Mathematical model of dengue disease with the incubation period of virus, World Academy of Science, Engineering and Technology, 44 (2008), 328-332.
|
[23] |
L. Qiang and B.-G. Wang,
An almost periodic malaria transmission model with time- delayed input of vector, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1525-1546.
doi: 10.3934/dcdsb.2017073. |
[24] |
L. Qiang, B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic with time delay, J. Diff. Equ., 269 (), 4440–4476.
doi: 10.1016/j.jde..03.027. |
[25] |
G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Co., London, 1971. |
[26] |
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), 93pp.
doi: 10.1090/memo/0647. |
[27] |
H. L. Smith, Monotone Dynamics Systems: An Introductionto the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, RI. 1995. |
[28] |
E. Soewono and A. K. Supriatna,
A two-dimensional model for the transmission of dengue fever disease, Bull. Malays. Math. Sci. Soc., 24 (2001), 49-57.
|
[29] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[30] |
B.-G. Wang, W.-T. Li and L. Qiang,
An almost periodic epidemic model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 271-289.
doi: 10.3934/dcdsb.2016.21.271. |
[31] |
B.-G. Wang, W.-T. Li and L. Zhang,
An almost periodic epidemic model with age structure in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 291-311.
doi: 10.3934/dcdsb.2016.21.291. |
[32] |
W. Wang and G. Mulone,
Threshold of disease transmission in a patch environment, J. Math. Anal. Appl., 285 (2003), 321-335.
doi: 10.1016/S0022-247X(03)00428-1. |
[33] |
B.-G. Wang and X.-Q. Zhao,
Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562.
doi: 10.1007/s10884-013-9304-7. |
[34] |
W. Wang and X.-Q. Zhao,
An Epidemic Model in a Patchy Environment, Math. Biosci., 190 (2004), 97-112.
doi: 10.1016/j.mbs.2002.11.001. |
[35] |
D. M. Watts, D. S. Burke, B. A. Harrison, R. E. Whitmire and A. Nisalak,
Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Hyg., 36 (1987), 143-152.
doi: 10.4269/ajtmh.1987.36.143. |
[36] |
World Health Organization (2012), Global Strategy for Dengue Prevention and Control 2012–, World Health Organization, Geneva. |
[37] |
F. Zhang and X.-Q. Zhao,
A periodic epidemic model in a patchy environment, J. Math. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
[38] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3. |
show all references
References:
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani,
Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x. |
[2] |
J. Arino and P. van den Driessche,
A multicity epidemic model, Math. Popul. Stud., 10 (2003), 175-193.
doi: 10.1080/08898480306720. |
[3] |
G. Aronsson and R. B. Kellogg,
On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122.
doi: 10.1016/0025-5564(78)90021-4. |
[4] |
C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company New York, N.Y., 1989. |
[5] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz,
On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[6] |
D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell,
A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670.
doi: 10.1126/science.287.5453.667. |
[7] |
L. Esteva and C. Vargas,
Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131-151.
doi: 10.1016/S0025-5564(98)10003-2. |
[8] |
L. Esteva and C. Vargas,
A model for dengue disease with variable human population, J. Math. Biol., 38 (1999), 220-240.
doi: 10.1007/s002850050147. |
[9] |
A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974. |
[10] |
S. Gakkhar and N. C. Chavda,
Impact of awareness on the spread of Dengue infection in human population, Appl. Math., 4 (2013), 142-147.
doi: 10.4236/am.2013.48A020. |
[11] |
D. Gubler,
Dengue and Dengue hemorrhagic fever., Clinical Microbiology Reviews, 3 (1998), 480-496.
|
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, RI, 1988. |
[13] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[14] |
Y. Hino, S. Murakami and T. Naiko, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[15] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115 (1927), 700-721.
|
[16] |
S. Lee and C. Castillo-Chavez,
The role of residence times in two-patch dengue transmission dynamics and optimal strategies, J. Theoret. Biol., 374 (2015), 152-164.
doi: 10.1016/j.jtbi.2015.03.005. |
[17] |
X. Liu and X.-Q. Zhao,
A periodic epidemic model with age structure in a patchy environment, SIAM J. Appl. Math., 71 (2011), 1896-1917.
doi: 10.1137/100813610. |
[18] |
Y. Lou and X.-Q. Zhao,
Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.
doi: 10.3934/dcdsb.2009.12.169. |
[19] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[20] |
G. R. Phaijoo and D. B. Gurung,
Mathematical study of dengue disease transmission in multi-patch environment, Appl. Math., 7 (2016), 1521-1533.
doi: 10.4236/am.2016.714132. |
[21] |
G. R. Phaijoo and D. B. Gurung,
Mathematical study of dengue disease with and without awareness in host population, Int. J. Adv. Eng. Res. Appl., 1 (2015), 239-245.
|
[22] |
P. Pongsumpun,
Mathematical model of dengue disease with the incubation period of virus, World Academy of Science, Engineering and Technology, 44 (2008), 328-332.
|
[23] |
L. Qiang and B.-G. Wang,
An almost periodic malaria transmission model with time- delayed input of vector, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1525-1546.
doi: 10.3934/dcdsb.2017073. |
[24] |
L. Qiang, B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic with time delay, J. Diff. Equ., 269 (), 4440–4476.
doi: 10.1016/j.jde..03.027. |
[25] |
G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Co., London, 1971. |
[26] |
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), 93pp.
doi: 10.1090/memo/0647. |
[27] |
H. L. Smith, Monotone Dynamics Systems: An Introductionto the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, RI. 1995. |
[28] |
E. Soewono and A. K. Supriatna,
A two-dimensional model for the transmission of dengue fever disease, Bull. Malays. Math. Sci. Soc., 24 (2001), 49-57.
|
[29] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[30] |
B.-G. Wang, W.-T. Li and L. Qiang,
An almost periodic epidemic model in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 271-289.
doi: 10.3934/dcdsb.2016.21.271. |
[31] |
B.-G. Wang, W.-T. Li and L. Zhang,
An almost periodic epidemic model with age structure in a patchy environment, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 291-311.
doi: 10.3934/dcdsb.2016.21.291. |
[32] |
W. Wang and G. Mulone,
Threshold of disease transmission in a patch environment, J. Math. Anal. Appl., 285 (2003), 321-335.
doi: 10.1016/S0022-247X(03)00428-1. |
[33] |
B.-G. Wang and X.-Q. Zhao,
Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562.
doi: 10.1007/s10884-013-9304-7. |
[34] |
W. Wang and X.-Q. Zhao,
An Epidemic Model in a Patchy Environment, Math. Biosci., 190 (2004), 97-112.
doi: 10.1016/j.mbs.2002.11.001. |
[35] |
D. M. Watts, D. S. Burke, B. A. Harrison, R. E. Whitmire and A. Nisalak,
Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Hyg., 36 (1987), 143-152.
doi: 10.4269/ajtmh.1987.36.143. |
[36] |
World Health Organization (2012), Global Strategy for Dengue Prevention and Control 2012–, World Health Organization, Geneva. |
[37] |
F. Zhang and X.-Q. Zhao,
A periodic epidemic model in a patchy environment, J. Math. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
[38] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3. |



[1] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[2] |
Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 |
[3] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[4] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[5] |
Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022 |
[6] |
Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 |
[7] |
Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983 |
[8] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[9] |
Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857 |
[10] |
Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51 |
[11] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[12] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[13] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[14] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[15] |
Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113 |
[16] |
Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303 |
[17] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[18] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[19] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[20] |
Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]