• Previous Article
    A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations
  • DCDS-B Home
  • This Issue
  • Next Article
    An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment
June  2021, 26(6): 3097-3118. doi: 10.3934/dcdsb.2020221

Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances

1. 

College of Control Science and Engineering, Shandong University, Jinan 250061, China

2. 

College of Mathematics Science Inner Mongolia Normal University Hohhot 010022, China

* Corresponding author: stliu618@163.com

Received  December 2019 Revised  April 2020 Published  June 2021 Early access  July 2020

Fund Project: The first author is supported by NSF of china 61533011, U1806203

This paper investigates the delay-distribution-dependent exponential synchronization problem for a class of chaotic neural networks with mixed random time-varying delays as well as restricted disturbances. Given the probability distribution of the time-varying delay, stochastic variable that satisfying Bernoulli distribution is formulated to produce a new system which includes the information of the probability distribution. Based on the Lyapunov-Krasovskii functional method, the Jensen's integral inequality theory and linear matrix inequality (LMI) technique, several delay-distribution-dependent sufficient conditions are developed to guarantee that the chaotic neural networks with mixed random time-varying delays are exponentially synchronized in mean square. Furthermore, the derived results are given in terms of simplified LMI, which can be straightforwardly solved by Matlab. Finally, two numerical examples are proposed to demonstrate the feasibility and the effectiveness of the presented synchronization scheme.

Citation: Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221
References:
[1]

P. BalasubramaniamV. Vembarasan and R. Rakkiyappan, Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2109-2129.  doi: 10.1016/j.cnsns.2010.08.024.

[2]

H. Bao and J. Cao, Delay-distibution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Network, 24 (2011), 19-28. 

[3]

J. Cai, L. Shen and F. Wu, Adaptive control of a class of non-linear systems preceded by backlash-like hysteresis, Math. Struct. Comput. Sci., 24 (2014), e240504, 14 pp. doi: 10.1017/S0960129512000473.

[4]

A. Cichoki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley and Sons, 2003.

[5]

Q. Gan and Y. Liang, Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control, J. Franklin Inst., 349 (2012), 1955-1971.  doi: 10.1016/j.jfranklin.2012.05.001.

[6]

M. Gilli, Strange attractors in delayed cellular neural networks, IEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 40 (1993), 849-853.  doi: 10.1109/81.251826.

[7]

K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.

[8]

B. HuQ. SongK. LiZ. ZhaoY. Liu and Fuad E. Alsaadi, Global $\mu$-synchronization of impulsive complex-valued neural networks with leakage delay and mixed time-varying delays, Neurocomputing, 307 (2018), 106-116. 

[9]

T. Kwork and K. A. Smith, A unified framework for chaotic neural networks approaches to combinatorial optimization, IEE Trans. Neural Netw., 10 (1999), 978-981. 

[10]

X. Li and S. Song, Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3892-3900.  doi: 10.1016/j.cnsns.2013.12.012.

[11]

J.-N. LiY.-J. Su and C.-L. Wen, Stochastic reliable control of a class of networked control systems with actuator faults and input saturation, Int. J. Control, Autom., Syst., 12 (2014), 564-571.  doi: 10.1007/s12555-013-0371-7.

[12]

Z. X. LiuH. W. Yang and F. W. Chen, Mean square exponential synchronization of stochastic neutral type chaotic neural networks with mixed delay, International Journal of Mathematical and Computational Sciences, 8 (2011), 1298-1303. 

[13]

H. Lu, Chaotic attractors in delayed neural networks, Phys. Lett. A, 298 (2002), 109-116.  doi: 10.1016/S0375-9601(02)00538-8.

[14]

G. Nagamani and S. Ramasamy, Stochastic deissativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in leakage term, Appl. Math. Comput., 289 (2016), 237-257.  doi: 10.1016/j.amc.2016.05.004.

[15]

J. NilssonB. Bernhardsson and B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays, Automatica J. IFAC, 34 (1998), 57-64.  doi: 10.1016/S0005-1098(97)00170-2.

[16]

C. Peng and Y.-C. Tian, Improved delay-dependent robust stability criteria for uncertain systems with interval time-varing delay, IET Control Theory Appl., 2 (2008), 752-761.  doi: 10.1049/iet-cta:20070362.

[17]

A. PratapR. RajaJi nde CaoG. Rajchakit and Fuad E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110-126.  doi: 10.1016/j.neucom.2018.08.016.

[18]

Y. TangJ. Fang and Q. Miao, On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded nonlinearities, Neurocomputing, 721 (2009), 694-701. 

[19]

G. VelmuruganR. Rakkiyappan and J. Cao, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Netw., 73 (2016), 36-46. 

[20]

J. WangK. ShiQ. HuangS. Zhong and D. Zhang, Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout, Appl. Math. Comput., 335 (2018), 211-230.  doi: 10.1016/j.amc.2018.04.038.

[21]

Z. WangH. ShuY. LiuD. W. C. Ho and X. Liu, Robust stability analysis of generalized neural networks with dicrete and distributed time delays, Chaos Solitons Fractals, 30 (2006), 886-896.  doi: 10.1016/j.chaos.2005.08.166.

[22]

W. WangM. YuX. LuoL. LiuM. Yuan and W. Zhao, Synchronization of memristive BAM neural networks with leakage delay and additive time-varying delay components via sampled-data control, Chaos Solitons Fractals, 104 (2017), 84-97.  doi: 10.1016/j.chaos.2017.08.011.

[23]

H. WuX. ZhangR. Li and R. Yao, Finite-time synchronization of chaotic neural networks with mixed time-varying delays and stochastic disturbance, Memetic Comp., 7 (2015), 231-240.  doi: 10.1007/s12293-014-0150-x.

[24]

S. Xu and T. Chen, Robust $H_{\infty}$ control for uncertain stochastic systems with state delay, IEEE Trans. Automat. Control, 47 (2002), 2089-2094.  doi: 10.1109/TAC.2002.805670.

[25]

X. ZhangX. Lv and X. Li, Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dyn., 90 (2017), 2199-2207.  doi: 10.1007/s11071-017-3795-4.

[26]

C.-D. ZhengZ. Wei and Z. Wang, Robustly adaptive synchronization for stochastic Markovian neural networks of neutral type with mixed mode-dependent delays, Neurocomputing, 171 (2016), 1254-1264.  doi: 10.1016/j.neucom.2015.07.066.

[27]

F. Zou and J. A. Nossek, Bifurcation and chaos in cellular neural networks, IEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 40 (1993), 166-173.  doi: 10.1109/81.222797.

show all references

References:
[1]

P. BalasubramaniamV. Vembarasan and R. Rakkiyappan, Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2109-2129.  doi: 10.1016/j.cnsns.2010.08.024.

[2]

H. Bao and J. Cao, Delay-distibution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Network, 24 (2011), 19-28. 

[3]

J. Cai, L. Shen and F. Wu, Adaptive control of a class of non-linear systems preceded by backlash-like hysteresis, Math. Struct. Comput. Sci., 24 (2014), e240504, 14 pp. doi: 10.1017/S0960129512000473.

[4]

A. Cichoki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley and Sons, 2003.

[5]

Q. Gan and Y. Liang, Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control, J. Franklin Inst., 349 (2012), 1955-1971.  doi: 10.1016/j.jfranklin.2012.05.001.

[6]

M. Gilli, Strange attractors in delayed cellular neural networks, IEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 40 (1993), 849-853.  doi: 10.1109/81.251826.

[7]

K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.

[8]

B. HuQ. SongK. LiZ. ZhaoY. Liu and Fuad E. Alsaadi, Global $\mu$-synchronization of impulsive complex-valued neural networks with leakage delay and mixed time-varying delays, Neurocomputing, 307 (2018), 106-116. 

[9]

T. Kwork and K. A. Smith, A unified framework for chaotic neural networks approaches to combinatorial optimization, IEE Trans. Neural Netw., 10 (1999), 978-981. 

[10]

X. Li and S. Song, Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3892-3900.  doi: 10.1016/j.cnsns.2013.12.012.

[11]

J.-N. LiY.-J. Su and C.-L. Wen, Stochastic reliable control of a class of networked control systems with actuator faults and input saturation, Int. J. Control, Autom., Syst., 12 (2014), 564-571.  doi: 10.1007/s12555-013-0371-7.

[12]

Z. X. LiuH. W. Yang and F. W. Chen, Mean square exponential synchronization of stochastic neutral type chaotic neural networks with mixed delay, International Journal of Mathematical and Computational Sciences, 8 (2011), 1298-1303. 

[13]

H. Lu, Chaotic attractors in delayed neural networks, Phys. Lett. A, 298 (2002), 109-116.  doi: 10.1016/S0375-9601(02)00538-8.

[14]

G. Nagamani and S. Ramasamy, Stochastic deissativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in leakage term, Appl. Math. Comput., 289 (2016), 237-257.  doi: 10.1016/j.amc.2016.05.004.

[15]

J. NilssonB. Bernhardsson and B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays, Automatica J. IFAC, 34 (1998), 57-64.  doi: 10.1016/S0005-1098(97)00170-2.

[16]

C. Peng and Y.-C. Tian, Improved delay-dependent robust stability criteria for uncertain systems with interval time-varing delay, IET Control Theory Appl., 2 (2008), 752-761.  doi: 10.1049/iet-cta:20070362.

[17]

A. PratapR. RajaJi nde CaoG. Rajchakit and Fuad E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110-126.  doi: 10.1016/j.neucom.2018.08.016.

[18]

Y. TangJ. Fang and Q. Miao, On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded nonlinearities, Neurocomputing, 721 (2009), 694-701. 

[19]

G. VelmuruganR. Rakkiyappan and J. Cao, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Netw., 73 (2016), 36-46. 

[20]

J. WangK. ShiQ. HuangS. Zhong and D. Zhang, Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout, Appl. Math. Comput., 335 (2018), 211-230.  doi: 10.1016/j.amc.2018.04.038.

[21]

Z. WangH. ShuY. LiuD. W. C. Ho and X. Liu, Robust stability analysis of generalized neural networks with dicrete and distributed time delays, Chaos Solitons Fractals, 30 (2006), 886-896.  doi: 10.1016/j.chaos.2005.08.166.

[22]

W. WangM. YuX. LuoL. LiuM. Yuan and W. Zhao, Synchronization of memristive BAM neural networks with leakage delay and additive time-varying delay components via sampled-data control, Chaos Solitons Fractals, 104 (2017), 84-97.  doi: 10.1016/j.chaos.2017.08.011.

[23]

H. WuX. ZhangR. Li and R. Yao, Finite-time synchronization of chaotic neural networks with mixed time-varying delays and stochastic disturbance, Memetic Comp., 7 (2015), 231-240.  doi: 10.1007/s12293-014-0150-x.

[24]

S. Xu and T. Chen, Robust $H_{\infty}$ control for uncertain stochastic systems with state delay, IEEE Trans. Automat. Control, 47 (2002), 2089-2094.  doi: 10.1109/TAC.2002.805670.

[25]

X. ZhangX. Lv and X. Li, Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dyn., 90 (2017), 2199-2207.  doi: 10.1007/s11071-017-3795-4.

[26]

C.-D. ZhengZ. Wei and Z. Wang, Robustly adaptive synchronization for stochastic Markovian neural networks of neutral type with mixed mode-dependent delays, Neurocomputing, 171 (2016), 1254-1264.  doi: 10.1016/j.neucom.2015.07.066.

[27]

F. Zou and J. A. Nossek, Bifurcation and chaos in cellular neural networks, IEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 40 (1993), 166-173.  doi: 10.1109/81.222797.

Figure 1.  (a) Chaotic behavior of the neural networks (3). (b) Chaotic behavior of the neural networks (4) without control input $ u(t) $
Figure 2.  (a) Chaotic behavior of the neural networks (4). (b)-(c) State trajectories of the neural networks (3) and (4). (d) Synchronization error trajectories of the state variables between the neural networks (3) and (4)
Figure 3.  (a) Chaotic behavior of the neural networks (3). (b) Chaotic behavior of the neural networks (4) without control input $ u(t) $
Figure 4.  (a) Chaotic behavior of the neural networks (4). (b)-(c) State trajectories of the neural networks (3) and (4). (d) Synchronization error trajectories of the state variables between the neural networks (3) and (4)
[1]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[2]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[3]

Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 2187-2221. doi: 10.3934/era.2020112

[4]

Yongkun Li, Bing Li. Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021248

[5]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[6]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6047-6056. doi: 10.3934/dcdsb.2021001

[7]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[8]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[9]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[10]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[11]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[12]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[13]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[14]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[15]

Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041

[16]

Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022005

[17]

Yacine Chitour, Zhenyu Liao, Romain Couillet. A geometric approach of gradient descent algorithms in linear neural networks. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022021

[18]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[19]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[20]

Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (302)
  • HTML views (310)
  • Cited by (0)

Other articles
by authors

[Back to Top]